AP Calculus
5.4 Worksheet Day 1

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.
For questions 1 -10, use the Fundamental Theorem of Calculus (Evaluation Part) to evaluate each definite integral. Use your memory of derivative rules and/or the chart from your notes. You should start making a list of all the rules on ONE page!

$$
\begin{aligned}
& \text { 1. } \int_{1}^{4}\left(x^{3}+\frac{5}{\sqrt{x}}\right) d x \rightarrow \int_{1}^{4}\left(x^{3}+5 x^{\frac{-1}{2}}\right) d x \\
& \int_{1} \sqrt{x}^{2} \int_{1}^{4}[64+20]-\left[\frac{1}{4}+10\right]^{2 .} \int_{3}^{5} \frac{d x}{x} \rightarrow \int_{3}^{5} \frac{1}{x} d x \\
& \left.\left.\left.=\frac{x^{4}}{4}+\frac{5 x^{\frac{1}{2}}}{1 / 2}-\frac{4^{4}}{4}+10(4)^{\frac{1}{2}}\right]-\left[\frac{1^{4}}{4}+10(1)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]\right]_{1}\left[\begin{array}{l}
84-\frac{1}{4}-10 \\
74-\frac{1}{4}=73 \frac{3}{4}
\end{array}\right. \\
& \text { 3. } \int_{1 / 2}^{\sqrt{3} / 2} \frac{1}{\sqrt{1-x^{2}}} d x \\
& \begin{aligned}
& \left.\sin ^{-1} x\right|_{1 / 2} ^{\sqrt{3} / 2} \\
= & \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}
\end{aligned} \\
& \text { 5. } \int_{0}^{2} 5^{x} d x=\left.\frac{5^{x}}{\ln 5}\right|_{0} ^{2} \\
& \text { 4. } \int_{-1}^{\sqrt{3}} \frac{1}{1+x^{2}} d x \\
& \tan ^{-1} \times\left.\right|_{-1} ^{\sqrt{3}} \\
& =\tan ^{-1}(\sqrt{3})-\tan ^{-1}(-1)=\frac{\pi}{3}-\left(-\frac{\pi}{4}\right) \\
& \text { 6. }\left.\int_{-3 x d x}^{n 7} \frac{7 x^{2}}{2}\right|_{-5} ^{12} \\
& \frac{7}{2}(12)^{2}-\frac{7}{2}(-5)^{2}=\frac{7(144)}{2}-\frac{7(25)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 6(5)-6(-2) \\
& -5 \cos \pi+5 \cos \frac{\pi}{2} \\
& 30+12=42 \\
& \text { 9. } \int_{0}^{\pi / 4} \sec ^{2}(x) d x \\
& \pi / 4 \\
& =\left.\tan x\right|_{0} ^{1} \\
& \tan \frac{\pi}{4}-\tan 0=1-0=1 \\
& \text { 10. }\left.\int_{-1}^{3} e^{x} d x \quad e^{\times}\right|_{-1} ^{3} \\
& =e^{3}-e^{-1} \\
& =\frac{e}{e} e^{3}-\frac{1}{e} \Rightarrow \frac{e^{4}-1}{e}
\end{aligned}
$$

For questions 11 and 12, setup and evaluate an expression involving definite integrals in order to find the total AREA of the region between the curve and the x-axis. [No Calculator!]
11. $y=3 x^{2}-3$ on the interval $-2 \leq x \leq 2$
12. $y=\sqrt{x}$ on the interval $0 \leq x \leq 9$

$$
\text { Total: } \int_{0}^{9} \sqrt{x} d x
$$

- entire graph in interval 0-9 is above x-axis.

For questions 13-16, find the average value of the function on the specified interval without a calculator.
13. $g(x)=9-3 x^{2}$ on the interval $[0,4]$
14. $h(x)=\csc (x) \cot (x)$ on the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

$$
\begin{array}{r}
\frac{\int_{0}^{4}\left(9-3 x^{2}\right) d x}{4-0}=\frac{1}{4}\left[9 x-x^{3}\right]_{0}^{4}=\frac{1}{4}\left(9 \cdot 4-4^{3}\right)-\frac{1}{4}\left(9 \cdot 0-0^{3}\right) \\
=\frac{1}{4}(36-64)=\frac{1}{4}(-28)=-7
\end{array}
$$

17. Including start-up costs, it costs a printer $\$ 50$ to print 24 copies of a newsletter, after which the marginal cost (in dollars per copy) at x copies is given by $C^{\prime}(x)=\frac{2}{\sqrt{x}}$. Find the total cost of printing 2500 newsletters.

$$
\begin{aligned}
C(2600) & =50+\int_{25}^{2500} C^{\prime}(x) d x \\
& =50+\int_{25}^{2500} 2 x^{-\frac{1}{2}} d x \\
& =50+2.2 x^{\frac{1}{2}} \int_{25}^{2500} \\
& =50+4(2500)^{\frac{1}{2}}-4(25)^{\frac{1}{2}}=50+4(5 \cdot 10)-4(5) \uparrow
\end{aligned}
$$

18. If you know $\int_{-7}^{9} f^{\prime}(x) d x=15$, and you know $f(-7)=4$, what does $f(9)=$?
19. The graph of $h^{\prime}(x)$ is given below. If $h(-2)=6$, what does $h(3)=$?

20. The graph of $B^{\prime}(x)$ is given below. If you know that $B(0)=5$, what does $B(5)=$?

