\qquad

1. Find the absolute extrema of the function and where they occur.
a) $f(x)=4 x^{2}-4 x-3$ over $[-2,2]$

$$
\begin{array}{ll}
f^{\prime}(x)=8 x-4 & \frac{x}{2 l}(x)(x) \\
0=8 x-4 & \frac{1}{2} \\
\hline=-4 \\
x=\frac{1}{2} & 2
\end{array}
$$

abs max $=21$ at $x=-2$
absmin $=-4$ at $x=1 / 2$
b) (Calculator) $f(x)=\left(x^{2}-9 x\right)^{\frac{1}{3}}$ over $[-4,8]$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{3}\left(x^{2}-9 x\right)^{-\frac{2}{3}}(2 x-9) \\
& x^{2}-9 x= \\
& x(x-9) \quad \frac{2 x-9}{3\left(x^{2}-9 x\right)^{2 / 3} \quad f^{\prime}(x)=0 \text { at } x=9 / 2} \quad f^{\prime}(x) \text { uni at } x=0,9
\end{aligned}
$$

2. Determine if MVT applies to the function. If it does, find the value of c guaranteed by the theorem. If it conditions does not, explain why. COnt on $[a, b]$ and diff on (a, b)
a) $f(x)=4 x^{2}+5 x$ over $[-2,1]$ $f^{\prime}(x)=8 x+5$

$$
\begin{aligned}
& f(1)=9 \\
& f(-2)=6
\end{aligned} \rightarrow \frac{6-9}{-2-1} \rightarrow \frac{-3}{-3}=1
$$

$$
\begin{aligned}
8 x+5 & =1 \quad x=-\frac{1}{2} \\
8 x & =-4
\end{aligned}
$$

Cong. $\sqrt{ } \sqrt{ }$ b) (Calculator) $f(x)=\sin x$ over $[4,5]$ $f^{\prime}(x)=\cos x$
$f(4)=\sin 4$
$f(5)=\sin 5$
slope $=\frac{\sin (5)-\sin (4)}{5-4}$

$$
\frac{\sin (5)-\sin (4)}{5-4}=\cos x
$$

and solve for x
3. For $f(x)=x^{4}-12 x^{2}-13$, find the following.

$$
x \approx 4.509
$$

a) Find the intervals that $f(x)$ is increasing and decreasing. Justify your response. $f(x)$ inc $(-\sqrt{6}, 0) \quad(\sqrt{6}, \infty)$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-24 x \quad \text { CP. } \\
& \text { are } \\
& f^{\prime}(x)=4 x\left(x^{2}-6\right)=O x=0,-\sqrt{6},+\sqrt{6}
\end{aligned}
$$

$$
f^{\prime}(x)>0^{\prime}
$$

$$
f(x) \operatorname{dec}(-\infty,-\sqrt{6})(0, \sqrt{6})
$$

b) Find the x-values of all local minimum and maximum values. Justify each answer.

$$
f^{\prime}(x)<0
$$

Localmins at $x=-\sqrt{6}$ and $\sqrt{6}$
Local max is at $x=0$
$f^{\prime}(x)$ changes + to -
$f^{\prime}(x)$ changes - to t
c) Find all points of inflection. Justify your response.

$$
f^{\prime \prime}(x)=12 x^{2}-24+12\left(x^{2}-2\right) \stackrel{+}{-\sqrt{2}} \underset{\sqrt{2}}{\stackrel{+}{4}} \underset{\left(f^{\prime \prime}(x)\right.}{\stackrel{ }{~}}
$$

P.O. Inflection at $x= \pm \sqrt{2}$
$f^{\prime \prime}(x)$ changes signs

$$
\operatorname{ccup}(-\infty,-\sqrt{2})(\sqrt{2}, \infty)
$$

d) Find the intervals that $f(x)$ is concave up and concave down. Justify your response.

$$
C_{c} \text { down }(-\sqrt{2}, \sqrt{2})
$$

4. Use the graph of $f^{\prime}(x)$ to the right to answer the following. Justify each response.
a) What is the slope of $f(x)$ at $x=2$?
 slope of $f(x) \cong$ IS derivative ($f^{\prime}(x)$
b) For which x values does $f(x)$ have a horizontal tangent line?

$$
X=-1,4
$$

Note: Graph of $f^{\prime}(x)$ not $f(x)$.
c) Find the intervals where $f(x)$ is increasing. (when $f^{\prime}(x)>0$)

$$
(-1,4) \quad(6, \infty)
$$

d) Find the x-values where $f(x)$ has a relative minimum/maximum. rel \min at $x=-1$ and $x=6$

$$
\text { relmax at } x=4
$$

e) Is $f(x)$ increasing or decreasing at $x=5$?

$$
\text { decreasing }\left(b / c f^{\prime}(5)<0\right)
$$

f) Is $f(x)$ concave up or concave down at $x=4$?

$$
f(x) \text { is CcD at } x=4
$$

f) Find the x-values where $f(x)$ has a point of inflection.

$$
x=2 \text { and } 5
$$

$$
\left(\begin{array}{c}
b / c f^{\prime}(x) \\
\text { changes direction }
\end{array}\right.
$$

5. Use the graph of $f(x)$ below to answer the following
coup
$(-2.5,2)$

colour $(-\infty,-6)$

(a) Find the intervals where $f(x)$ is increasing and decreasing.

b) Find all x -values where the slope of $f(x)$ is zero.

$$
X=-4,-1,4
$$

c) Find all x -values where the derivative of $f(x)$ does not exist

$$
\begin{aligned}
& X=-6,2,6 \\
& \text { ind all critical points of } f(x) \\
& X=-4,-1,4,6
\end{aligned}
$$

e) Find all coordinates where $f(x)$ has relative extrema.

$$
a+x=-4,-1,6
$$

f) Find all x -values where $f(x)$ has a point of inflection (approximate if necessary)

$$
x=-25,4
$$

g) Find the intervals where $f(x)$ is concave up and concave down (approximate if necessary)
6. Find the poof
$=\frac{1}{2}\left(9-x^{2}\right)^{-\frac{1}{2}}(-2 x)$

$$
\frac{d y}{d x}=\frac{-\not 2 x \rightarrow \text { if num }=0 \text {, hor tang. } x=0}{\not 2 \sqrt{9-x^{2}} \text { if den }=0 \text {, vert. tang. } x= \pm 3} \begin{array}{ll}
\text { is }(0,3) \\
\text { pt. of v.T } \\
(-3,0)
\end{array}
$$

Pt. of H.T

Pt. of $V \cdot T$ $(-3,0)$

$$
(3,0)
$$

7. $f(x)=e^{2 x}$. Find equation of tangent line

$$
\begin{aligned}
& f^{\prime}(x), x, y \text { to } f(x) \text { at }\left(\frac{1}{2} \ln 5,5\right) \\
& \begin{aligned}
f^{\prime}(x) & =e^{2 x} \cdot 2 \\
f^{\prime}\left(\frac{1}{2} \ln 5\right) & =e^{2\left(\frac{1}{2} \ln 5\right)} \cdot 2 \\
& =5 \cdot 2 \\
& =10
\end{aligned}
\end{aligned}
$$

8. Use the information in the table about $f(x)$ over $[-3,6]$ to answer the following questions.

a) Find the points of relative and absolute extrema for $f(x)$. Justify your response.
abs min $=-4$
rel max at $x=0 \quad f^{\prime}(x)$ to -
relmin at $x=3 \quad f^{\prime}(x)-$ to + abs max $=0$
b) Sketch a graph of $f(x)$ on the axes below.

