\qquad

Derivative of \boldsymbol{e}^{x}

The Chain Rule and $\boldsymbol{e}^{\boldsymbol{x}}$
If u is a differentiable function of x, then
WAr To $\frac{d}{d x}\left[e^{u}\right]=e^{u} \cdot \frac{d u}{d x}$
Example $1 \frac{d}{d x}\left[e^{2 x-1}\right]$
Example $2 \frac{d}{d x}\left[e^{\frac{3}{x}}\right]$ or

$$
=e^{3 x^{-1}} \cdot-3 x^{-2}
$$

$y^{\prime} \rightarrow \frac{d y}{d x}$
Example 3 Find y^{\prime} if $y^{2}+e^{y}=2 x^{2}$

Derivative of $\ln x$

$$
\frac{d}{d x}[\ln x]=\frac{1}{x}
$$

The Chain Rule and $\ln x$
If u is a differentiable function of x, then

$$
\frac{d}{d x}[\ln u]=\frac{1}{u} \cdot \frac{d u}{d x}
$$

Example 4 prove $\frac{d}{d x}[\ln x]=\frac{1}{x}$ using implicit differentiation

Example 5 Let $f(x)=\ln (\tan x)$. Find $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{1}{\tan x} \cdot \sec ^{2} x
$$

Logarithmic Differentiation

The properties of logarithms can be used to simplify some problems. Here is a review of the properties

Name	Mathematical Property	Example
Definition of Logarithm	If $b^{c}=a$, then $\log _{b} a=c$	
Addition Rule	$\log _{b}(M N)=\log _{b}(M)+\log _{b}(N)$	$\log _{2}(5 x)=16$, then $\log _{2} 16=4$
Subtraction Rule	$\log _{b}\left(\frac{M}{N}\right)=\log _{b}(M)-\log _{b}(N)$	$\log _{2}\left(\frac{5}{x}\right)=\log _{2}(5)-2 \log _{2}(x)$
Exponent Rule	$\log _{b}\left(M^{k}\right)=k \cdot \log _{b}(M)$	$\log _{2}\left(5^{3}\right)=3 \cdot \log _{2}(5)$
Change of Base	$\log _{b} a=\frac{\ln a}{\ln b}$	$\log _{2} 3=\frac{\ln 3}{\ln 2}$

Example 6 Rewrite $f(x)$ using properties of logs and find $f^{\prime}(x)$ $\ln x \rightarrow 1 / x$

Example 7 Use the properties of logarithms to rewrite $f(x)$ and find $f^{\prime}(x)$ in terms of x .

* if you have the variable Mbothbase and exponent \rightarrow take \ln of both sides*

$$
\frac{d}{d x}(\ln) y=\frac{d}{=x}(\sin x \cdot \ln x)
$$

$$
\frac{1}{y} \cdot \frac{d y}{d x}=\cos x \cdot \ln x+\sin x \cdot \frac{1}{x}
$$

By utilizing the rules of logarithms and implicit differentiation, you can turn an exponential equation into an equation involving logarithms that is usually easier to deal with.

Example $9 \frac{d}{d x}\left[2^{x}\right]$ $y=2^{x}$
$\left.\frac{d}{d x} \ln y=\frac{d}{d x} x \cdot \ln 2\right)$

Example $10 \frac{d}{d x}\left[3^{x}\right]$

Derivative of a^{x} where a is a constant

$$
\frac{d}{d x}\left[a^{x}\right]=\ln a \cdot a^{x}
$$

The Chain Rule and $\boldsymbol{a}^{\boldsymbol{x}}$ where \boldsymbol{a} is a constant

If u is a differentiable function of x, then

$$
\frac{d}{d x}\left[a^{u}\right]=\ln a \cdot a^{u} \cdot \frac{d u}{d x}
$$

Example 11 Find the derivative of $f(x)=e^{5 x}+7^{2 x}+\ln \left(x^{2}+4\right)$

$$
f^{\prime}(x)=e^{5 x} \cdot 5+\ln 7 \cdot 7^{2 x} \cdot 2+\frac{1}{x^{2}+4} \cdot 2 x
$$

Example 12 Find the derivative of $f(x)=e^{\tan 3 x}+6^{x^{2}}+\ln (\sec x)$

$$
f^{\prime}(x)=e^{\tan (3 x)} \cdot \sec ^{2}(3 x) \cdot 3+\ln 6 \cdot 6^{x^{x}} \cdot 2 x+\frac{1}{\operatorname{seax} x}
$$

