AB Calculus: Derivatives of Exp. and Log Functions

Name:

$$\frac{d}{dx}[\ln u] = \frac{1}{u} \cdot \frac{du}{dx}$$

Example 5 Let $f(x) = \ln(\tan x)$. Find f'(x).

 $f'(x) = \frac{1}{\tan x} \cdot \sec^2 x$

Logarithmic Differentiation

The properties of logarithms can be used to simplify some problems. Here is a review of the properties

Nan	ne	Mathematical Property	Example
Defi	inition of Logarithm	If $b^c = a$, then $log_b a = c$	If $2^4 = 16$, then $log_2 16 = 4$
Add	lition Rule	$log_b(MN) = log_b(M) + log_b(N)$	$log_2(5x) = log_2(5) + log_2(x)$
Sub	traction Rule	$\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$	$\log_2\left(\frac{5}{x}\right) = \log_2(5) - \log_2(x)$
Exp	onent Rule	$\log_b(M^k) = k \cdot \log_b(M)$	$log_2(5^3) = 3 \cdot log_2(5)$
Cha	nge of Base	$\log_b a = \frac{\ln a}{\ln b} \tag{(1)}$	$\log_2 3 = \frac{\ln 3}{\ln 2}$
Example 6 Rewrite $f(x)$ using properties of logs and find $f'(x)$ $h_1 x + \frac{1}{2x}$ $f(x) = \log_5 \sqrt{x}$ $f(x) = \frac{\ln \sqrt{x}}{\ln 5}$ or $\frac{1}{\ln 5} \frac{\ln \sqrt{x}}{\ln 5}$ $\frac{\ln \sqrt{x}}{\ln 5} = \frac{1}{2 \times \ln 5}$ $\int (x) = \frac{\ln \sqrt{x}}{\ln 5} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} = \frac{1}{2 \times \ln 5}$ Example 7 Use the properties of logarithms to rewrite $f(x)$ and find $f'(x)$ in terms of x.			
f(x)	$=\chi \sin \chi$	$y \to y = \chi^{\text{sinx}}$	-> variablemboth base and exponent -> take
$d_{dx}(lny) = $	d d d x Ginx ln x = COSX ln X	$+ \sin x \frac{1}{x} \frac{dy}{dx} =$	$\frac{\cos x \ln x + \sin x}{x}$

By utilizing the rules of logarithms and implicit differentiation, you can turn an exponential equation into an equation involving logarithms that is usually easier to deal with.

Example 9
$$\frac{d}{dx}[2^x]$$

 $y = 2^x$
 $\frac{d}{dx} \ln y = \frac{d}{dx} \ln 2$
 $\frac{1}{y} \frac{dy}{dx} = \ln 2$
Example 10 $\frac{d}{dx}[3^x]$
 $\frac{dy}{dx} = (\ln 2) \frac{y}{2^x}$
 $\frac{dy}{dx} = (\ln 2) \frac{z^x}{2^x}$
Example 10 $\frac{d}{dx}[3^x]$
 $\frac{dy}{dx} = (\ln 2) \frac{y}{2^x}$
 $\frac{dy}{dx} = (\ln 2) \frac{z^x}{2^x}$

Derivative of a^x where a is a constant

$$\frac{d}{dx}[a^x] = \ln a \cdot a^x$$

The Chain Rule and a^x where a is a constant

If u is a differentiable function of x, then

$$\frac{d}{dx}[a^u] = \ln a \cdot a^u \cdot \frac{du}{dx}$$

Example 11 Find the derivative of $f(x) = e^{5x} + 7^{2x} + \ln(x^2 + 4)$

$$f(x) = e^{5x}5 + e^{77x}2 + \frac{1}{x^{3}+4} \cdot 3x$$

Example 12 Find the derivative of
$$f(x) = e^{\tan 3x} + 6^{x^2} + \ln(\sec x)$$

 $f'(x) = e^{\tan(3x)} \cdot \sec^2(3x) \cdot 3 + \ln(6 + 6^x) \cdot 3 + \frac{1}{\sec x}$