

$$
\sqrt{(3)} \frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
1
$$

$$
\frac{d}{d x}\left[\cos ^{-1} u\right]=\frac{-1}{\sqrt{1-u^{2}}} \cdot u^{\prime}
$$

$$
\frac{d}{d x}\left[\cot ^{-1} u\right]=\frac{-1}{1+u^{2}} \cdot u
$$

$$
\frac{d}{d x}\left[\csc ^{-1} u\right]=\frac{-1}{|u| \sqrt{u^{2}-1}} \cdot u^{\prime}
$$

Notes:
Domains are restricted to make them functions so do not worry about $\sin ^{-1} x$ versus $\operatorname{Sin}^{-1} x$.
$\sin ^{-1} x$ and $\arcsin x$ are the same thing. Both refer to the inverse sine function.

$$
=\frac{1}{\sqrt{1-\left(t^{2}\right)^{2}}} \cdot 2 t=\frac{2 t}{\sqrt{1-t^{4}}}
$$

$$
\begin{aligned}
& \text { Example 4: Find } \frac{d}{d x}\left[x \sec ^{-1}(3 x)\right] \\
& =1 \cdot \sec ^{\prime}(3 x)+\frac{1}{(3 x \mid] \sqrt{(3)^{2}-1}} \cdot 3
\end{aligned}
$$

Given: $=\sec ^{-1}(3 x)+\frac{1}{\sqrt{9 x^{2}-1}}$

$$
y=x^{2}+1 \text {, find it's inverse. }
$$

(1) $x=y^{2}+1$

$$
\begin{aligned}
& y^{2}=x-1 \\
& y=\sqrt{x-1}
\end{aligned}
$$

(a)

Derivatives of Inverse Trig Functions where ulis a function of x

$$
\begin{aligned}
& \frac{d}{d x}\left[\sin ^{-1} u\right]=\frac{1}{\sqrt{1-u^{u}} \cdot u^{\prime}} \\
& \frac{d}{d x}\left[\tan ^{-1} u\right]=\frac{1}{1+u^{2}} \cdot u^{\prime} \\
& \frac{d}{d x}\left[\sec ^{-1} u\right]=\frac{1}{|u| \sqrt{u^{2}-1}} \cdot u^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1} x \xrightarrow{\rightarrow} \frac{1}{1+x^{2}} \\
& \begin{aligned}
\sqrt{x} & \rightarrow \frac{1}{2 \sqrt{x}} \\
x-1 & \rightarrow 1
\end{aligned} \\
& \Rightarrow \frac{1}{1+(\sqrt{x-1})^{2}} \cdot \frac{1}{2 \sqrt{x-1}} \cdot 1 \\
& \Rightarrow \frac{1}{1+x-1} \cdot \frac{1}{2 \sqrt{x-1}}=\frac{1}{2 x \sqrt{x-1}}
\end{aligned}
$$

The derivative of $f^{-1}(x)$ at the point (p, q) is the reciprocal of the derivative of $f(x)$ at the point (q, p).
of the res
Example 6 Let $f(x)=x^{5}+2 x-1$. Find of $\left(f^{-1}\right)^{\prime}(-1)$ at the point $(0,-1)$ using the logical

$$
0=x\left(x^{4}+2\right) \rightarrow x=0
$$

Example 7 Let $f(x)=x^{3}+2 x-1$. Find $\left.\frac{d f^{-1}}{d x}\right|_{x=2}$ using both methods. You can use your calculator to help you find the missing coordinate. \rightarrow input of inverse \rightarrow output of $f(x)$

$$
\begin{aligned}
& \begin{aligned}
f^{\prime}(x) & =3 x^{2}+2 \\
2 & =x^{3}+2 x-1
\end{aligned} \quad \text { answer: } \frac{1}{f^{\prime}(1)}=\frac{1}{3(1)^{2}+2}=\frac{1}{5} \\
& 0=x^{3}+2 x-3 \quad(x=1 \text { is a solution }) \dot{ } \\
& \begin{array}{c}
1 \begin{array}{rrrr}
1 & 0 & 2 & -3 \\
1 & 1 & 3 \\
1 & 1 & 3 & 0
\end{array} ~
\end{array} \\
& \rightarrow(x-1)\left(x^{2}+x+3\right)=0 \\
& b^{2}-4 a c \\
& 1-4(1)(3)<0 \text { solmaginary }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
(-1) \text { at the point }(0,-1) \text { using } \rightarrow 1 \rightarrow \text { methods me that } \\
G \text { at input of inverse }=-1 \rightarrow \text { tells men }
\end{array} \\
& \text { Output of normal } \\
& \text { function } 1 s-1 \\
& f^{\prime}(0) \\
& \begin{aligned}
f^{\prime}(x) & =5 x^{4}+2 \\
f^{\prime}(0) & =5(0)^{4}+2 \\
& =2
\end{aligned} \\
& -1=x^{5}+2 x-1 \\
& 0=x^{5}+2 x
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x_{3}^{3}+2 x+1 \text { j find }\left(f^{-1}\right)^{\prime}\binom{1}{y} \text {. } \\
& 1=x^{3}+2 x+1 \quad f^{\prime}(x)=3 x^{2}+2 \quad \text { input of inverse, } \\
& 0=x^{3}+2 x \quad\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}(0)} \\
& \text { thereforeit's } \\
& \text { the output of } \\
& 0=x\left(x^{2}+2\right) \\
& =\frac{1}{3(0)^{2}+2} \\
& x=0 \quad x^{2}+2=0 \text { imaginary }=\frac{1}{2} \\
& \text { Derivative of the Inverse Function at (} p, q \text {) } \\
& \left(f^{-1}\right)^{\prime}(p)=\frac{1}{f^{\prime}(q)}
\end{aligned}
$$

