\qquad

Equations that are solved for y are called explicit functions, whereas equations that are not solved for y are called implicit functions. For instance, the equation $x+2 y-3=0$ implies that y is a function of x, even though it is not written in the form $y=-\frac{1}{2} x+\frac{3}{2}$. Up to this point in this class we have been using explicit functions of y expressed in the form $y=f(x)$ such as

$$
y=\frac{x+1}{x+2} \quad \text { or } \quad y=\sin x
$$

If we have an equation that involves both x and y in which y has not been solved for x, then we say the equation defines y as an implicit function of x. In this case, we may (or may not) be able to solve for y in terms of x to obtain an explicit function (or possibly several functions).

Example 1 Find the derivative of the following expressions
a) Find $\frac{d}{d x}$ ff $x^{3} \rightarrow$
$3 x^{2}$
b) Find $\frac{d}{d x}$ of $y^{3} \rightarrow 3 y^{2} \cdot \frac{d y}{d x}$

d.) Find $\frac{d}{d x}$ of $x^{3}+y^{2}-3(x y)$

$$
=3 x^{2}+2 y \cdot \frac{d y}{d x}-3\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)
$$

Example 2 The graph to the right is a circle with the equation $x^{2}+y^{2}=4$.
a) Solve the equation for y and find the derivative of the resulting functions)

$$
x^{2}+y^{2}=4
$$

$$
y^{2}=4-x^{2}
$$

$$
y= \pm \sqrt{4-x^{2}}
$$

$$
\begin{aligned}
& \text { on for y and find the derivative of the resulting functions) } \frac{1}{2} \\
& \begin{array}{l}
\frac{d}{d x} y=\frac{d}{d x} \pm \sqrt{4-x^{2}} \rightarrow\left(4-x^{2}\right)^{2} \\
\frac{d y}{d x}=\frac{1}{2}\left(4-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x) \\
\frac{d y}{d x}=\frac{-x}{\sqrt{4-x^{2}}} \rightarrow \text { if } x= \pm 2 \rightarrow \text { if } x=0 \rightarrow 0 \rightarrow v \text {.Tangent } \\
\text { we by differentiatingimolicitlv }
\end{array} \text { if } x \rightarrow H \text {. Tangent }
\end{aligned}
$$

$$
2 y \cdot \frac{d y}{d x}=-2 x
$$

$2 x+2 y \cdot \frac{d y}{d x}=0$

$$
\frac{d y}{d x}=\frac{-2 x}{\partial y}=-\frac{x}{y}=\frac{d y}{d x} \text { UT } \rightarrow-x=0
$$

c) Find where the derivative is positive, where it is negative, where it is zero, and where it is undefined.

If we have y written as an explicit function of $x, y=f(x)$, then we can find the derivative using the rules we have previously learned. For an equation which defines y as an implicit function of x, we can compute the derivative without solving for y in terms of x with the following procedure. The key to this entire procedure is to remember that even though you did not (or cannot) write y as a function of x, y is implicitly defined as a function of x.

Steps for Implicit Differentiation

1. Differentiate both sides of the equation with respect to x (y is a function of x, so use chain rule).
2. Collect all $\frac{d y}{d x}$ terms on the left side of the equation and move all other terms to the right side.
3. Factor $\frac{d y}{d x}$ out of the left side of the equation if there is more than one $\frac{d y}{d x}$ term.
4. Solve for $\frac{d y}{d x}$ (It is okay to have both x 's and y 's in your answer).

Note: To find $\frac{d y}{d x}$ at a given point, take the derivative of both sides then immediately plug in the point and simplify.
take $\frac{d}{d x^{3}}$
Example 4 Given the curve $x^{3}+y^{3}=6(x y$)
a) Find($\left.\frac{d y}{d x}\right) 3 x^{2}+3 y^{2} \frac{d y}{d x}=6\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)$

$$
\begin{aligned}
& \begin{aligned}
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x} \\
&-3 x^{2}-6 x d x \\
&-6 x \frac{d y}{d x}
\end{aligned} \quad>-3 x^{2}+\frac{\frac{d y}{d x}\left(3 y^{2}-6 x\right)}{3 y^{2}-6 x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \\
& 3 y^{2} \frac{d y}{d x}-6 x \frac{d y}{d x}=6 y-3 x^{2}-\frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \text { or } \frac{2 y-x^{2}}{y^{2}-2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Point- } \\
& \text { Scope } \\
& \left(x, y, \frac{d y}{d x}\right)
\end{aligned}
$$

$$
\left|\frac{d y}{d x}\right|_{\left(\frac{4}{3}, \frac{8}{3}\right)}=\frac{2\left(\frac{8}{3}\right)-\left(\frac{4}{3}\right)^{2}}{\left(\frac{8}{3}\right)^{2}-2\left(\frac{4}{3}\right)}=\frac{\frac{3}{3} \frac{\frac{16}{3}-\frac{16}{9}}{\frac{64}{9}-\frac{8}{3} \cdot \frac{3}{3}}=\frac{48-16}{64-24}=\frac{32}{40}=\frac{4}{5} N \cdot y-\frac{8}{3}=-\frac{5}{4}\left(x-\frac{4}{3}\right) .}{\left(\frac{16}{3}\right)}
$$

$$
\left.\begin{array}{l}
\sec ^{2}(x+y) \cdot\left(1+\frac{d y}{d x}\right)=1 \quad \text { Example } 5 \text { Find } \frac{d y}{d x} \text { at the point }(0,0) \text { of the function } \tan (x+y)=x \cdot \frac{d y}{d x}(0,0)=\cos ^{2}(0+0)-1=\cos ^{2} 0-1 \\
1+\frac{1 y}{d x}=\frac{1}{1^{2}-1=1-1=0} \\
\sec ^{2}(x+y)
\end{array} \text { so } \frac{d y}{d x}=\frac{1}{\sec ^{2}(x+y)}-1 \text { or } \frac{d y}{d x}=\cos ^{2}(x+y)-1\right)
$$

1) $\frac{d y}{d x} \quad$ Example 6 Find $\frac{d^{2} y}{d x^{2}}$ of $2 x^{3}-3 y^{2}=8$
$\rightarrow 6 x^{2}-6 y \cdot \frac{d y}{d x}=0$
(3)

