ABCALC Integrals as Net Change Notesheet

Name:

Recall that the definite integral gives us the net accumulation over an interval. For things that change, we can use the definite integral to model a myriad of real-world applications.

Distance versus Displacement

We have already seen how the position of an object can be found by finding the integral of the velocity function. The change in position is a displacement. To see the difference between distance and displacement, complete the following example.

Example 1 Consider the following statement

Start Oligitation of the start

"Two steps forward and one step back"

What is the total distance traveled in this scenario? _

What is the total displacement in this scenario?

To Find	Verbally	Mathematically
Displacement (Change in Position)	Integrate the rate of change over the interval	$\int_{a}^{b} v(t)dt$
Distance Traveled	Integrate the speed over the interval *Recall that speed is the absolute value of velocity	$\int_{a}^{b} speed dt = \int_{a}^{b} v(t) dt$
New Position	Old positon + change in position	$s(b) = s(a) + \int_{a}^{b} v(t)dt$

EXAMPLE 2 Suppose the velocity of a particle moving along the x-axis is given by $v(t) = 6t^2 - 18t + 12$ when $t \le 2$. When is the particle moving to the right? When is the particle moving to the left? When is it stopped? $V(t) = (et^{-1})(8t + 1) = 0$ 七=1,2 $b(t^2-3t^2+2)=0$ b(t-2)(t-1)=0b) Find the particle's displacement over the time interval. = 2 (2) - 9 (2) + 12 (2) $(6t^{2} - 18t + 12)dt =$ 2t⁻ Displacement = = 16 - 36+24 Find the particle's total distance traveled (calculator). c) = 40 - 36 =|v(+)|dt = 6Total Distance traveled d) Setup an integral to find the particle's total distance traveled without using absolute value. $\vee (+) dt$ V(t) dt

Example 3 The tide removes sand from Sandy Point Beach at a rate modeled by the function R given by

$$R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right)$$

A pumping station adds sand to the beach at a rate modeled by the function *S*, given by

$$f_{1} = \frac{15t}{1+3t}$$
Both $R(t)$ and $S(t)$ have units of dubic yards per hour and t is measured in hours to $0 \le t \le 6$, time $t = 0$, the beach contains 2500 cubic yards of sand. (Calculator)
a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.

$$f_{1}(t) = f_{1}(t) =$$