AB Calculus Integrals as Net Change Practice \qquad

1. a) Integrating velocity gives displacement = changein

b) Mreegrangs the absolute value of veocotiry vies $+\int_{a}^{b} v(t) d t$
c) New option $=$ Old Position

$$
\nu(t)=-(t+1) \sin \left(\frac{t^{2}}{2}\right)
$$

a) Find the acceleration of the particle at time $t=2$.

$$
a(t)=v^{\prime}(t) \quad v^{\prime}(2) \text { or } a(2)=1.588
$$

$v(t)=0 \quad t=2.507 \quad v(t)$ changes - to t
c) Find the opal distance traveled by the particle form tine $t=0$ ot time $t=3$.

$$
\int_{0}^{3}|l(t)| d t=4.334
$$

did t $=0 \rightarrow t=0$

A particle moves along the x -axis (units in cm). Its initial position at
$t=0$ seconds is $x(0)=15$. The figure shows the graph of the particle's velocity $v(t)$. The numbers are the areas of the enclosed regions.
a) What is the particle's displacement between $t=0$, and $t=c$?

$$
-4+5-24=-23 \mathrm{~cm}
$$

b) What is the total distance traveled by the particle in the same time period as part a?

$$
4+5+24=33 \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { c) } \\
& x(a)=11 \times \text { the positions of the particle at times } a, b, \text { and } c . \\
& x(b)=16 \quad x(c)=-8)
\end{aligned}
$$

d) Approximately where does the particle achieve its greatest positive acceleration on the interval $[0, b]$? at a
e) Approximately where does the particle achieve its greatest positive acceleration on the interval $[0, c]$? at c
4. The rate at which people enter an amusement park on a given day is modeled by the function $E(t)$ defined by

$$
E(t)=\frac{15600}{t^{2}-24 t+160}
$$

The rate at which people leave the same amusement park is modeled by the function $L(t)$ defined by

$$
L(t)=\frac{9890}{t^{2}-38 t+370}
$$

Both $E(t)$ and $L(t)$ are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \leq t \leq 23$, the hours during which the park is open. At time $t=9$. There are no people in the park.
a) How many people have entered the park by $5: 00 \mathrm{pm}(t=17)$? Round your answer to the nearest whole number. 17

$$
\int_{9}^{1 t} E(t) d t=6004 \text { people }
$$

b) The price of admission to the park is $\$ 15$ until $5: 00 \mathrm{pm}(t=17)$. After 5:00 pm, the price of admission to the park is $\$ 11$. How much money is collected by the park on the given day? Round to the nearest dollar.

c) Let $H(t)=\int_{9}^{t}(E(x)-L(x)) d x$ for $9 \leq t \leq 23$. The value of $H(17)$ to the nearest whole number is 3725. Find the value of $H^{\prime}(17)$ and explain the meaning of $H(17)$ and $H^{\prime}(17)$ in the context of the park.

$$
H(17)=3,25 \xrightarrow{\# o f} \text { people in park at } 5 \mathrm{p} \cdot \mathrm{~m} \text {. }
$$

$$
H^{\prime}(17)=E(17)-L(17)=-380.281 \text { people } / \mathrm{hr} \rightarrow \text { at } 5 \text { pm. people are }
$$

$$
H^{\prime}(t)=E(t)-L(t)
$$

d) At what time t, for $9 \leq t \leq 23$, does the model predict that the number of people in the park is a maximum? Show the work that leads to your answer.

$$
\begin{gathered}
H^{\prime}(t)=0=E(t)-L(t) \\
\text { at } t=15.795 \quad E(t) \text { crosses } \\
L(t) .
\end{gathered}
$$

