\qquad

1. I

If $f(x)=x^{3}-2 x+3$,

$$
\begin{aligned}
& \text { a) Find the linearization } L(x) \text { of } f(x) \text { centered at } x=2 \text {. } \\
& x=2 \quad f^{\prime}(x)=3 x^{2}-2 T(x) y-7=10(x-2) \\
& f(2)=7 \quad f^{\prime}(2)=10 \quad L(x) \approx y=10(x-2)+7
\end{aligned}
$$

b) Use $L(x)$ to approximate $f(2.1)$

$$
\begin{aligned}
f(2.1) \approx L(2.1) & =10(2.1-2)+7 \\
= & 10(.1)+7 \\
= & 1+7=8
\end{aligned}
$$

c) Determine if the approximation is an underestimate or an overestimate.
$L(2.1)=8 \quad$ we underestimated \quad veledrivative $\rightarrow f^{\prime \prime}(x)=6 x$
$f(2.1)=8.061 \quad{ }^{\downarrow}$ wousing a calk. 个 \quad know? at $f^{\prime \prime}(2)=12>0$,coup
d) Use a calculator to determine the accuracy of the approximation you found in part b.

$$
|8.061-8|=\underset{\text { Senor }}{.061}<.1
$$

2. If $f(x)=\sqrt{x^{2}+9}$,
a) Find the linearization $L(x)$ of $f(x)$ centered at $x=-4$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1 \cdot 2 x}{2 \sqrt{x^{2}+9}}=\frac{x}{\sqrt{x^{2}+9}} \quad \begin{array}{l}
\text { a) Find the linearization } L(x) \text { of } f(x) \text { centered at } x=-4 \\
f^{\prime}(-4)=\frac{-4}{\sqrt{16+9}}=-\frac{4}{5} \quad y-5=-\frac{4}{5}(x+4) \\
L(x) \approx y=-\frac{4}{5}(x+4)+5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) Use } L(x) \text { to approximate } f(-3.9) \\
& \begin{aligned}
f(-3.9) \approx L(-3.9) & =-\frac{4}{5}(-3.9+4)+5 \\
& =\frac{-4}{5} \cdot \frac{1}{10}+5=\frac{-2}{25}+\frac{125}{25}=\frac{123}{25}
\end{aligned}
\end{aligned}
$$

c) Use a calculator to determine the accuracy of the approximation you found in part b.

$$
\begin{aligned}
& f(-3.9)=4.92036584 \\
& |f(-3.9)-L(-3.9)|=3.6584 \times 10^{-4}<\frac{1}{1000}
\end{aligned}
$$

3. Approximate the value of $\sqrt{101}$ by using a linearization of a nearby number.

$$
\begin{array}{rlrl}
f(x)=\sqrt{x} & \text { Guse } x=100 \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} & y-10 & =\frac{1}{20}(x-100) \\
f(100)=\sqrt{100}=10 & L(x) & =\frac{1}{20}(x-100)+10 \\
f^{\prime}(100)=\frac{1}{2 \sqrt{100}}=\frac{1}{20} & L(101) & =\frac{1}{20}(101-100)+10 \\
& & =\frac{1}{20}+10 & L(101)=10.05 \\
& & \sqrt{101} \approx 10.05
\end{array}
$$

4. For each of the following, find $d y$ and evaluate $d y$ for the given value of x and $d x$.

$$
\begin{array}{rlrl}
\text { a) } & \begin{aligned}
y & =x^{3}-3 x, x=2, d x=0.05
\end{aligned} & \left.d y\right|_{x=2, d x=.05} & =\left(3 \cdot 2^{2}-3\right) \cdot .05 \\
& =9 \cdot .05 \\
\frac{d y}{d x} & =3 x^{2}-3 & \left.d y\right|_{2,05} & =.45
\end{array}
$$

b) $y=x^{2} \ln x, x=1, d x=0.01$

$$
\begin{aligned}
& \frac{d y}{d x}=\left(2 x \cdot \ln x+x^{2} \cdot \frac{1}{x}\right) d x \\
& \left.\frac{d y}{d x}\right|_{x=1,1 d x=.01}=\left(2(1) \cdot \ln 1+1^{2} \cdot \frac{1}{1}\right) \cdot 01=01=d y
\end{aligned}
$$

5. Use differentials to estimate the change in the volume of a sphere $\left(V=\frac{4}{3} \pi r^{3}\right)$ when the radius changes from 10 cm to 10.05 cm dr$=10.05-10=.05$

$$
\begin{aligned}
& \frac{d V}{d r}=4 \pi r^{2} \\
& d V=4 \pi r^{2} d r
\end{aligned} \quad d V=4 \pi(10)^{2}(.05)=\frac{4 \pi \cdot 100.5}{100}=20 \pi \mathrm{~cm}^{3}
$$

6. Evaluate the following limits

$$
\lim _{x \rightarrow \frac{\pi}{2}^{+}} \frac{\cos x+1}{\sin x}=\frac{0+1}{1}=1
$$

c) $\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{\frac{1}{x}}$
$x \rightarrow 0$
take \ln of this $) \rightarrow$ final step is to undo en by raising e^{\wedge} and

$$
\begin{aligned}
& \text { take ln of this } \quad: e^{2} \\
& \lim _{x \rightarrow 0} \frac{1}{x} \ln \left(e^{x}+x\right) \\
& \lim _{x \rightarrow 0} \frac{\ln \left(e^{x}+x\right)}{x} \rightarrow \frac{0}{0} \rightarrow \text { L'Hosprtals } \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{e^{x}+x}\left(e^{x}+1\right)}{1}=\frac{1}{1}(2)=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow 0^{+}} x \ln x \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \rightarrow \frac{-\infty}{\infty} \rightarrow \text { Hospital's }=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \rightarrow \frac{-x^{2}}{x} \rightarrow-x \rightarrow 0 \\
& \begin{array}{l}
\text { b) } \lim _{x \rightarrow \frac{\pi^{+}}{2}} \frac{1+\sec x}{\tan x} \rightarrow \frac{\cos x}{\cos x}+\frac{1}{\frac{\sin x}{\cos x}} \rightarrow \frac{\infty}{\infty} \rightarrow L^{\prime} H H \rightarrow \frac{\sec x \tan x}{\sec ^{2} x} \rightarrow \frac{\tan x}{\sec x} \rightarrow \frac{\text { UH }}{+\frac{\sec ^{2} x}{\sec x \tan x}} \\
\frac{\sec x}{\tan x} \rightarrow \frac{\frac{1}{\cos x}}{\frac{\sin x}{\cos x}}=\frac{1}{\sin x}
\end{array}
\end{aligned}
$$

