\qquad

1. State the Mean Value Theorem (MVT) in 2 ways:
a) In words: cont $[a, b]$ AR $O C=1 R \propto$ or slope $=$ derivative

$$
\text { diff }(a, b)
$$

b) Mathematically:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

2. For each of the following, (a) state whether or not the function satisfies the hypothesis of the MVT over cont $[1,6]^{\text {the }}$ given interval, and (b) if it does, find that value of c that the MVT guarantees. NO MUT since $\operatorname{diff}(1, \mathrm{a}), 6) f(x)=-2 x^{2}+14 x-12$ over $[1,6]$ $f^{\prime}(x)=-4 x+14$

$$
\begin{aligned}
& \text { b) } \quad h(x)=x \\
& \frac{0-0}{6-1}=0
\end{aligned}
$$ $n(x)$ is NOT

diff on $(-1,1)$

$$
\begin{aligned}
& f(x)=-4 x+14 \\
& f(6)=-2(36)+14(6)-12=-72+84-12=0 \\
& -2 / 1)+14-12=12-12=0
\end{aligned}
$$

$-4 x=-14$

$$
\begin{aligned}
& f(6)=-2(1)+14-12=12-12=0 \\
& f(1)=3 . \quad \text { Suppose } f(x) \text { is a differentiable }
\end{aligned}
$$

$x=\frac{-14}{-4}=\frac{7}{2} \rightarrow$ value that's guaranteed by
3. Suppose $f(x)$ is a differentiable function on the interval $[-7,1]$ such that $f(-7)=4$ and $f(1)=-1$. MuT \checkmark Therefore it has to pe continuity
a) Explain why f must have at least one value in the interval $(-7,1)$, where the function equals $2 \rightarrow y$-value

INT $b \mid c-1<2<4$ there is a c such $-7<c<1$
that $f(r)=2$
b) Explain why there must be at least one point on the interval $(-7,1)$ where the derivative is $-\frac{5}{8}$.

MUT $\quad \frac{-1-4}{1--7}=-\frac{5}{8} \quad$ Therefore There is $a-7 \times c<1$ such that $f^{\prime}(c)=\frac{-5}{8}$
4. Make a sign chart for the following functions. 7/2
a) $f^{\prime}(x)=(x-3)^{2}(x+4)(7-x)$

b) $g^{\prime}(x)=\frac{5(2 x-7)}{(x+1)(3 x-5)}$

5. For each function, find the critical numbers of f and where the function is increasing or decreasing and find all relative extrema.
a) $h(x)=\frac{2}{x}$
b) $f(x)=x^{3}-6 x^{2}+15$
c) $h(x)=\frac{-x}{x^{2}+4}$
d) $g(x)=x^{2}-x-\ln x$

