\qquad

1. A small balloon is released at a point 150 feet away from an observer who is on level ground. If the balloon goes straight up at the rate of $8 \mathrm{ft} / \mathrm{sec}$, how fast is the distance from the observer to the balloon increasing when the balloon is 50 ft . high?

$$
\begin{array}{ll}
150^{2}+B^{2}=z^{2} \longrightarrow 150^{2}+50^{2}=z^{2} \\
2 B \frac{d B}{d t}=2 z \frac{d z}{d t} & z^{2}=25,000 \\
\alpha(5 \sigma(8)=p(\%) \sqrt{10}) \frac{d z}{d t} & \\
& =50 \sqrt{10} \\
\frac{d z}{d t}=\frac{8}{\sqrt{10}} \mathrm{ft} / \mathrm{sec} &
\end{array}
$$

2. A man throws a stone into a still pond causing circular ripples to spread. If the radius of the circle increases at a constant rate of $1.5 \mathrm{ft} / \mathrm{sec}$ how fast is the enclosed area of the ripples increasing when the radius of the ripple is 3

$$
\begin{aligned}
& \frac{d}{d t}=\frac{d \pi r^{2}}{d t} \\
& \frac{d A}{d t}=2 \pi r \cdot \frac{d r}{d t}
\end{aligned}
$$

$$
\frac{d A}{d t}=2 \pi(3)(1.5)
$$

$$
=9 \pi \mathrm{ft} t^{2} / \mathrm{sec}
$$

3. A 6 ft . tall man is 10 ft . away from an 18 ft . light pole. The man walks towards the pole at a rate of $1 \mathrm{ft} / \mathrm{sec}$.
a) Find the rate at which the length of his shadow is changing.

$$
\begin{aligned}
& \frac{P}{M}=\frac{D+S}{S} \\
& \frac{18}{6}=\frac{D+S}{S}
\end{aligned} \quad\left[\begin{array}{l}
18 S=6 D+6 S \\
2 S=0 D \\
2 \frac{d S}{d t}=\frac{d D}{d t}
\end{array}\right.
$$

$$
\begin{aligned}
& 2 \frac{d S}{d t}=-1 \\
& \frac{d S}{d t}=-\frac{1}{2} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

b) Find the rate at which the tip of his shadow is moving.

Tip of shadow is moving at a rate of $-1+-\frac{1}{2}=-\frac{3}{2} \mathrm{ft} / \mathrm{s}$
4. A cylindrical tank of radius 10 ft . is being filled with wheat at a rate of 314 cubic feet per minute How fast is the depth of the wheat increasing? (The volume of a cylinder is $V=\pi r^{2} h$ where r is the radius and h is the height).

$$
\begin{aligned}
& r=10 \\
& h \\
& \frac{r}{r} \\
& \frac{d V}{d t}=314
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d h}{d t}=? \\
& v=\pi(10)^{2} h \\
& \frac{d v}{d t}=\frac{d 100 \pi h}{d t} \\
& \frac{d v}{d t}=100 \pi \frac{d h}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& 314=100 \pi \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{314}{100 \pi} f t / \mathrm{min}
\end{aligned}
$$

$$
v=\pi(10)^{2} h \quad \frac{d h}{d t}=\frac{314}{100 \pi} \mathrm{ft} / \mathrm{min}
$$

5. If $f(x)=\ln (x+1)$, find the linearization $L(x)$ of $f(x)$ centered at $x=0$. Use it to approximate $\ln (1.1)$ then use your calculator to determine the accuracy of the approximation.
6. If $f(x)=x^{2}+2 x$, find $d y$ when $x=0$ and $d x=0.1$.
7. Evaluate the following limits.
a) $\lim _{x \rightarrow 0^{+}}(\tan x)^{\sin x}$
b) $\lim _{x \rightarrow 0} \frac{3 x}{\ln (x+1)}$
8. The graph of $f^{\prime}(x)$, the derivative of $f(x)$ is shown to the right. Use it to answer the following questions.

a) Find the interval for which $f(x)$ is increasing. Justify your answer.
b) Find the x-values where $f(x)$ has a relative minimum. Justify your answer.
c) Find all points of inflection for $f(x)$. Justify your answer.
d) Find the interval for which $f(x)$ is concave up. Justify your answer.
