\qquad

1. How do you find average rate of change?

$$
\lim _{h \rightarrow 0} \frac{f^{x_{2}-x_{1}} \text { How dx o un find instantaneous rate of change? }}{h}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

$$
\begin{aligned}
& \text { 3. Use the original limit definition of derivative to find the derivative of each of the following. } \\
& \lim _{h \rightarrow 0} \frac{(x+h)^{3}+x+h-x^{3}-x}{h} \\
& \frac{x^{3}+3 x^{2} k+3 x h^{2}+h^{32}+x+x^{+1}+x^{3}-x}{x} \\
& \lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}+1 \\
& f^{\prime}(x)=3 x^{2}+1 \\
& \text { b) } f(x)=\sqrt{x+2} \\
& \lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \cdot \frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}} \\
& \frac{x+h+2-x-2}{h(\sqrt{x+h+2}+\sqrt{x+2})} \rightarrow \lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+2}+\sqrt{x+2}} \Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x+2}} \\
& \text { 4. Use the alterative definition of the derivative to fond the derivative efeachef the following. } \\
& \text { a) } f(x)=\frac{1}{2 x-3} \text { at } x=2 \text { Ans: } \\
& f(2)=\frac{1}{4-3}=1 \\
& \lim _{x \rightarrow 2} \frac{\frac{1}{2 x-3}-1 \frac{(2 x-3)}{(2 x-3}}{x-2} \rightarrow \frac{1-2 x+3}{(x-2)(2 x-3)} \rightarrow \frac{-2 x+4}{(x-2)(2 x-3)} \rightarrow-2(x)(x-2)(x) 3, \\
& \xrightarrow{\rightarrow} \frac{-2}{2 x-3} \\
& \begin{array}{l}
\lim _{x \rightarrow 3} \frac{4+2 x+x^{2}-19}{x-3} \\
\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x-3} / \lim _{x \rightarrow 3} \frac{(x+5)(x-3)}{x-3} \\
\lim _{x \rightarrow 3} x+5=8
\end{array} \\
& \frac{-2}{2(2)-3}=-2 \\
& \text { Ans: } f^{\prime}(3)=8
\end{aligned}
$$

5. Find the derivative of the function $2 x^{2}-13 x+5$ and use it to find the equation of the tangent line to the curve $x=3$.

$$
\begin{aligned}
& f^{\prime}(x)=4 x-13 \\
& f^{\prime}(3)=4(3)-13=-1 \quad y+16=-1(x-3) \\
& f(3)=2(3)^{2}-13(3)+5=-16
\end{aligned}
$$

6. If $f^{\prime}(4)=-3$ and $f(4)=7$, find the equation of the normal line to $f(x)$ at $x=4$.

$$
y-7=-3(x-4) \quad y-7=\frac{1}{3}(x-4)
$$

7. Match the graph of each function in the top row with the graph of its derivative in the bottom row.
I.

a)

II.

b)

III.

c)

IV.

d)

8. The graph of the function $y=f(x)$ shown here is made of line segments joined end to end. Graph $f^{\prime}(x)$ in the space provided below.

Graph of $f(x)$

Graph $f^{\prime}(x)$ here

