\qquad

Linear Combination Form

Any vector $\mathbf{v}=\langle a, b\rangle$ can be written as a linear combination of the two standard unit vectors.

$$
\mathbf{i}=\langle 1,0\rangle
$$

$$
\mathbf{j}=\langle 0,1\rangle
$$

The vector \mathbf{v} is a linear combination of the vectors \mathbf{i} and \mathbf{j}. The scalar a is the horizontal component of \mathbf{v} and the scalar b is the vertical component of \mathbf{v}.

Example 1 Let $P=(-1,5)$ and $Q=(3,2)$. Write the vector $\overrightarrow{P Q}$ as a linear combination of \mathbf{i} and \mathbf{j}.

$$
P Q=<4 \ggg \ggg
$$

Vector-Valued Functions
A particle moves through the plane on a time interval / with the coordinates of the particle as functions defined by $I: x=f(t) y=g(t)$
The points $(x, y)=(f(t), g(t)), t \in I$ make up the curve in the plane that is the particle's path.

The vector $\mathbf{r}(t)=\overrightarrow{O P}=\langle f(t), g(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}$ from the origin to the particle's position at time t is the position vector. The functions f and g are the component functions (components) of the position vector. The particle's path is the curve traced by r during the time interval I.

Example 2 Graph the vector function
$r(t)=(3 \cos t) \mathbf{i}+(4 \sin t-1) j$ where $t>0$.

t	$3 \cos t$	$4 \sin t-1$
$\pi / 2$	0	3
π	-3	-1
$3 \pi / 2$	0	-5
2π	3	-1

Limit of a vector function
Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$. If $\lim _{t \rightarrow c} f(t)=L_{1}$ and $\lim _{t \rightarrow c} g(t)=L_{2}$, then the limit of $r(t)$ as t approaches c is $\lim _{t \rightarrow c} \mathbf{r}(t)=\boldsymbol{L}=L_{1} \mathbf{i}+L_{2} \mathbf{j}$.

Example 3 Let $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}$. Find $\lim _{t \rightarrow \pi / 4} \mathbf{r}(t)$.

$$
\lim _{t \rightarrow \pi / 4 / 4} r(t)=\left(\cos \frac{\operatorname{tin}}{4}\right) i+\left(\sin \frac{\pi}{4}\right) j=\frac{\sqrt{2}}{2} i+\frac{\sqrt{2}}{2} j
$$

Example 4 Let $\mathbf{r}(t)=\left(t^{2}\right) \mathbf{i}+\ln (t-3) \mathbf{j}$. Find $\lim _{t \rightarrow 0} \mathbf{r}(t)$.

$$
\lim _{t \rightarrow 0} r(t)=\left(0^{2}\right) i+\ln (-3) j
$$

Derivative of a vector function

Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$ with components made up of the differentiable functions $f(t)$ and $g(t)$. Then, the derivative of $\mathbf{r}(t)$ is

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}
$$

Example 5 Let $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}$. Find $\mathbf{r}^{\prime}(t)$.

$$
r^{\prime}(t)=(-\sin t) i+(\cos t) j
$$

Integral of a vector function

Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$ with components made up of the integrable functions $f(t)$ and $g(t)$. Then, the definite integral of $\mathbf{r}(t)$ from a to b is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}
$$

Example 6 Evaluate $\int_{0}^{\pi}((\cos t) \mathbf{i}+2 \mathrm{t} \mathbf{j}) d t$. π

Example $\mathbf{7}$ Find an equation for $\mathbf{r}(t)$ and $\mathbf{v}(t)$ if $\mathbf{a}(t)=2 t \mathbf{i}-5 \mathbf{j}$ and $\mathbf{v}(0)=3 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}$.

Example 8 The vector $\mathbf{r}(t)=\left(2 t^{3}-3 t^{2}\right) \mathbf{i}+\left(t^{3}-12 t\right) \mathbf{j}$ gives the position of a particle at time t.
a) Write an equation for the line tangent to the path of the particle at the point where $t=-1$.
b) Find the coordinates of each point where the horizontal component of the velocity is zero.
c) Find the acceleration vector at time $t=2$.

