\qquad

An alternating series is a series whose terms are alternately positive and negative on consecutive terms. Examples:

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\cdots \quad \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n} \quad-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}+\cdots+\cdots \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!}
$$

In general, just knowing that $\lim _{n \rightarrow \infty} a_{n}=0$ tells us very little about the convergence of the series $\sum_{n=1}^{\infty} a_{n}$. However, it turns out that an alternating series must converge if its terms consistently shrink in size to 0 .

Alternating Series Test (AST)
If $a_{n}>0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges if both of the following conditions are satisfied:

- $\lim _{n \rightarrow \infty} a_{n}=0$
- $\left\{a_{n}\right\}$ is a decreasing (or non-increasing) sequence. That is, $a_{n+1} \leq a_{n}$ for all $n>k$ for some $k \in \mathbb{Z}$.

Note: This does not say that if $\lim a_{n} \neq 0$ the series diverges by AST. The AST can only be used to prove convergence. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series diverges by the nth term test, not the AST.

Example 1 Determine whether the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2 n-1}$ diverges n therm $\lim _{n \rightarrow \infty} \frac{n}{2 n-1}=\frac{1}{2} \neq 0$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\ln (2 n)}$ diverge by nth term $\lim _{n \rightarrow \infty}^{\lim _{n=\infty} \frac{n}{\ln (2 n)} \rightarrow+\frac{1}{\frac{1}{2 n}(2)} \rightarrow n \rightarrow \infty}$
c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$ converges by AST
d) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$ converges by AST $\lim _{n \rightarrow \infty} \frac{1}{n} \rightarrow 0 \begin{gathered}\text { since } \cos (n \pi) \\ \text { altemates } \\ \text { between -land } \mid\end{gathered} \quad \lim _{n \rightarrow \infty} \frac{1}{n!}=0$
e) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n-5)^{2}+1}$ AST converges

$$
\lim _{n \rightarrow \infty} \frac{1}{(n-\sigma)^{2}+1}=0
$$

f) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges by AST

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \rightarrow 0
$$

Absolute vs. Conditional Convergence

If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.

Such a series is called absolutely convergent. Notice that if it converges on its own, the alternator only allows it to converge more rapidly.
$\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent if $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.

Example 2 Determine whether the following alternating series converge absolutely, conditionally, or diverges.
2) $\sum_{n=1}^{\infty}\left(\frac{-1)^{n}}{\sqrt{n}} \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=\right.$ Condthodry converging by A\&T
as its own series,
this is a p-serie sw a $p=\frac{1}{2} \rightarrow$ diverges
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3^{n}} \lim _{n \rightarrow \infty} \frac{1}{3^{n}}=\bigcirc$ AST converges absolutely
*

$$
\frac{1}{3^{n}}=\left(\frac{1}{3}\right)^{n} \quad \stackrel{\downarrow}{\xi} \text { Genies w/an } r=\frac{1}{3} \rightarrow \text { converges }
$$

Alternating Series Remainder
If an alternating series satisfies the conditions of the AST, namely that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left\{a_{n}\right\}$ is not increasing, and the series has a sum S, then $\left|R_{n}\right|=\left|S-S_{n}\right|<a_{n+1}$, where S_{n} is the nth partial sum of the series.

In other words, if an alternating series satisfies the conditions of the AST, you can approximate the sum of the series by using the nth partial sum S_{n}, and your error will have an absolute value not greater than the first term left off, a_{n+1}. This means $\left|S_{n}-R_{n}\right| \leq S \leq\left|S_{n}+R_{n}\right|$
a $\quad a_{1}=1 \quad a_{2}=\frac{-1}{2} \quad a_{3}=\frac{1}{6} \quad a_{4}=-\frac{1}{24} \quad a_{5}=\frac{1}{120} \quad a_{6}=\frac{-1}{720}$
Example 3 Approximate the sum $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$ by using th six terms and the maximum error. Use your result to fin the interval in which S must lie.

$$
\text { (c) } \frac{91}{191}-\frac{1}{S 400} \leqslant S \leqslant \frac{91}{144}+\frac{1}{5040}
$$

$\begin{array}{ll}\text { Example 4 Approximate the sum of } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}} & \left.a_{4}=\frac{-1}{256} \quad S \quad \text { with an error less thar 0.000. }\right) \\ \frac{-1}{16} & a_{5}=\frac{1}{1000} \\ \frac{1}{81} & a_{6}=\frac{1}{1296}\end{array} \quad=S_{5}=1-\frac{1}{16}+\frac{1}{81}-\frac{1}{256}+\frac{1}{625}$

