BC Calculus Improper Integrals Day 1 Notesheet

Name:

To Begin Evaluate the following integrals using your calculator.

a)
$$\int_{1}^{100} \frac{1}{x} dx + 605$$
 b) $\int_{1}^{1000} \frac{1}{x} dx - 6908$ c) $\int_{1}^{1000000} \frac{1}{x} dx + 3816$

Based on the results you obtained above, predict the value of the following integral.

$$\int_{1}^{\infty} \frac{1}{x} dx \qquad (\text{Divergent})$$

Evaluate the following integrals using your calculator.

d)
$$\int_{1}^{100} e^{-x} dx$$
 368 e) $\int_{1}^{1000} e^{-x} dx$ 368

Based on the results you obtained above, predict the value of the following integral.

$$\int_{1}^{\infty} e^{-x} dx \qquad 36\%$$

Use Desmos to investigate the graphs of $f(x) = \frac{1}{x}$ and $g(x) = e^{-x}$ in the first quadrants. Why would these two integrals give such different results? e^{-x} is approaching the x - ax is much quicker

Improper Integrals

Integrals such as $\int_a^{\infty} f(x)dx$, $\int_{-\infty}^{b} f(x)dx$, and $\int_{-\infty}^{\infty} f(x)dx$ are called improper integrals. Integrals are classified as improper for three reasons.

- 1. They have an infinite interval of integration.
- 2. They have a discontinuity on the interior of the interval of integration.
- 3. Both 1 and 2.

Dealing with Infinite Intervals of Integration

If $\int_{a}^{b} f(x)dx$ exists for every b > a, then $\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$, provided the limit exists.

If $\int_{a}^{b} f(x) dx$ exists for every a < b, then $\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$, provided the limit exists.

Basically, substitute a variable for ∞ or $-\infty$ and find the limit as the variable approaches ∞ or $-\infty$.

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \int_{1}^{\infty} \frac{1}{x^{2$$