When you integrate, you find the antiderivative, or you "undo" the derivative. When you used u-substitution, you were undoing a derivative that involved the Chain Rule. Today, we will learn how to undo a derivative that involves the product rule.

First, recall the way we differentiate functions using the Product Rule and differential notation.

$$
(u v)^{\prime}=u d v+v d u
$$

The trick with integration by parts is determining which function to select as your "u." When selecting u, think of the word LIPET \longrightarrow this helps us figure what to set $u=$

Trigonometric

$$
\begin{aligned}
& \text { Example } 1 \text { Evaluate } \int x \overline{\overline{\cos } x} \int_{d x} u \cdot d v \\
& \int x \ln x d x=(\ln x)\left(\frac{1}{2} x^{2}\right)-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x \\
& S=\frac{1}{2} x^{2} \cdot \ln x-\frac{1}{2} \int x d x \rightarrow \frac{1}{2} x^{2} \cdot \ln x-\frac{1}{2} \cdot \frac{x^{2}}{2}+c \\
& \text { Example } 4 \text { Evaluate } \int x \sec ^{2} x d x \\
& u=x \quad \int d v=\int \sec ^{2} x d x \\
& d u=d x \quad v=\tan x \\
& \int x \sec ^{2} x d x=x \cdot \tan x-\int \tan x d x \\
& \int \tan x d x=\int \frac{\sin x}{\cos x} d x \rightarrow \begin{array}{l}
u=\cos x \\
d u=-\sin x d x
\end{array} \\
& =-\int \frac{1}{u} d u \rightarrow-\ln |u|+c \\
& d x-\ln |\cos x|+c \\
& u=\ln x \quad \int d v=\int d x \\
& d u=\frac{1}{\alpha} d x \quad v=x \\
& \int \ln x d x=(\ln x)(x)-\int x \cdot \frac{1}{x} d x \\
& =x \ln x-\int d x \\
& =x \ln x-x+c \\
& \text { Sometimes, an integration by parts problem will try to disguise itself. }
\end{aligned}
$$

Sometimes, we have to repeat ourselves. Sometimes, we have to repeat ourselves.
LIPET Example 7 Evaluate $\int x^{2} \sin x d x$

$$
\begin{array}{ll}
u=x^{2} \iint d v=\int \sin x d x & i v=x \int d v=\int \operatorname{coss} x d x \\
d u=2 x d x \quad v=-\cos x & : d u=d x \quad v=\sin x \\
=\left(x^{2}\right)(-\cos x)-\int-\cos x \cdot 2 x d x & x \cdot \sin x-\int \sin x d x \\
=-x^{2} \cos x+2 \int x \cos x d x & : x \sin x+\cos x+c \\
& : \text { Final: }-x^{2} \cos x+2 x \sin x+2 \cos x+C
\end{array}
$$

We have seen that integrals of the form $\int f(x) g(x) d x$, in which f can be differentiated repeatedly to become zero and g can be integrated repeatedly without difficulty, are natural candidates for integration by parts.
However, if many repetitions are required, the calculations can become cumbersome. In situations like this, using a table can help organize the calculations and speed the process up.

Example 8 Evaluate $\int x^{2} \sin x d x$ using the tabular method

$$
\begin{aligned}
& \begin{array}{l}
2 \pm-\sin x \downarrow \frac{1}{+} \\
0+\cos x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } 10 \text { Evaluate } \int x^{3} \cos (2 x) d x \\
& \frac{v}{x^{3}}+\frac{d v}{\cos (2 x)} \\
& 3 x^{2}-\frac{1}{2} \sin (2 x) \\
& 6 x \geq-\frac{1}{4} \cos (2 x) \\
& 6 \quad \frac{-1}{8} \sin (2 x) \\
& \bigcirc \frac{1}{16} \cos (2 x) \\
& \text { What if neither function goes to zero? } \\
& \text { LImPET } \\
& \text { Example } 11 \text { Evaluate } \int e^{x} \cos (x) d x \\
& u=e^{x} \int d v=\int \cos x d x \\
& d u=e^{x} d x \quad v=\sin x \\
& =e^{x} \sin x-\int \sin x e^{x} d x \\
& \int \sin x \cdot e^{x} d x \\
& \int^{2} \frac{2 e^{x} \cos x d x}{2}=\frac{e^{x} \sin x+e^{x} \cos x}{2} \\
& u=e^{x} \int d v=\int \sin x d x \\
& d u=e^{x} d x \quad v=-\cos x \\
& -e^{x} \cos x+\int \cos x e^{x} d x \\
& \text { original: } \int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x-\int \cos x e^{x} d x \\
& +\int e^{x} \cos x d x
\end{aligned}
$$

