BC Calculus Integration by Parts Notesheet Name:

When you integrate, you find the antiderivative, or you “undo” the derivative. When you used u-substitution,
you were undoing a derivative that involved the Chain Rule. Today, we will learn how to undo a derivative that
involves the product rule.

First, recall the way we differentiate functions using the Product Rule and differential notation.
(uv) = udv + vdu

Using the ProductRule, we can develop a formulgTor integration by parts

( M \/> d\/ + \/ ) Cp \U Integration by Parts

If u and v are functions of x and have

continuous derivatives, then

v=(ud |
uv = (u v+§\/ du EW‘W

u\/ — 5\/ ) d \L = S\u . d\/ / “Oohvee vadoo”

The trick with integration by parts is determining which function to select as your “u.” When selecting u, think of
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Sometimes, we have to repeat ourselves. Sometimes, we have to repeat ourselves.
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We have seen that integrals of the form [ f(x)g(x)dx, in which f can be differentiated repeatedly to become
zero and g can be integrated repeatedly without difficulty, are natural candidates for integration by parts.

However, if many repetitions are required, the calculations can become cumbersome. In situations like this,
using a table can help organize the calculations and speed the process up.

Example 8 Evaluate [ x2 sin x dx using the tabular method
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What if neither function goes to zero?
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