$\qquad$

In some quantities we deal with, only the magnitude (value or number) is important. Your speedometer tells you how fast you are going. These are called scalars. If we are concerned about both the magnitude and direction, then we have a quantity called a vector. To reiterate, with a scalar, only magnitude is important. With a vector, both magnitude and direction are important.


There are many ways to represent a vector. We will learn several. The first is a geometric interpretation, an example of which is shown above. In the geometric interpretation of a vector, we use a directed line segment to represent the vector. The starting point of the vector is called the tail or initial point, and the ending point of the vector, indicated with an arrow, is called the head or terminal point. The length of the vector is the vector's magnitude, and the direction the vector points is the vector's direction. Two vectors are equal if they have the same magnitude and direction.

## Component Form of a Vector

If $\mathbf{v}$ is a vector in the plane equal to the vector with initial point $(0,0)$ and terminal point $\left(v_{1}, v_{2}\right)$, then the component form of $\mathbf{v}$ is $v=\left\langle v_{1}, v_{2}\right\rangle$ where numbers $v_{1}$ and $v_{2}$ are components of vector $\mathbf{v}$. $v_{1}$ is the horizontal component and $v_{2}$ is the vertical component. The vector $\langle 0,0\rangle$ is called the zero vector.

Example 1 Let $A=(0,0), B=(3,4), C=(-4,2)$, and $D=(-1,6)$. Show that the vectors $\mathbf{u}=\overrightarrow{A B}$ and $\mathbf{v}=\overrightarrow{C D}$ are equal.




## Vector Notation

There are arew different ways vectors are reprent using notation. One use therminal points such as $\overrightarrow{A B}$. This notation indicates that the vector starts at point A and terminates at point B . Another notation requires the naming of a vector such as $\vec{u}$. A third way is similar to the previous way, but instead of using an arrow, bold print is used. For example, u would mean the vector named $u$. The notation $|\overrightarrow{A B}|$ or $\|\overrightarrow{A B}\|$
represents the length or magnitude of the vector $\overrightarrow{A B}$.
The location of a vector does not matter. If the vectors have the same length and same direction, then they are equal no matter where they are located on the coordinate plane. A vector with initial point at the origin is said to be in standard position. In example $1, \overrightarrow{A B}$ is in standard position.

## Magnitude of a Vector

The magnitude or length of the vector $\mathbf{v}=\overrightarrow{A B}$ determined by $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
|\stackrel{\rightharpoonup}{A B}|=\|\stackrel{\rightharpoonup}{A B}\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(v_{1}\right)^{2}+\left(v_{2}\right)^{2}}
$$



Example $\mathbf{2}$ Find the magnitude of $\mathbf{u}=\langle 7,2\rangle$.

$$
|\vec{v}|=\sqrt{49+4}=\sqrt{53}
$$



Example 3 Find the magnitude of $\overrightarrow{A B}$ if $A=(1,2)$ and $B=(5,-1)$


Unit Vectors

A unit vector is a vector of whose magnitude is 1 . To find a unit vector in the direction of a given vector, divide each component of the vector by the magnitude of the vector. For example, if the vector $\mathbf{v}$ is not the zero vector, then the unit vector in the direction of $\mathbf{v}$ is

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

start
Example 4 Find the component form of the vector with initial point $P(-3,4)$ and terminal point $Q(-5,2)$, the length of the vector, and a unit vector in the direction of the vector from $P$ to $Q$.

$$
\begin{array}{ll}
\overrightarrow{P Q}=\langle 5-3,2-4\rangle & \frac{\overrightarrow{P Q}}{\mid \overrightarrow{P Q}=\langle-2,-2\rangle}=\left\langle\frac{-2}{2 \sqrt{2}}, \frac{-2}{2 \sqrt{2}}\right\rangle \\
\overrightarrow{P Q} \mid & \langle-2 i-2 j \\
|\overrightarrow{P Q}|=\sqrt{2^{2}+2^{2}}=\sqrt{8} \text { or } \quad 2 \sqrt{2} & \left\langle-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\rangle
\end{array}
$$

Finding the component form of a vector with a given length and direction

1) Horizontal $\rightarrow$ vertical

In general, for vector $\mathbf{v}=\langle a, b\rangle, a=\underline{|\mathbf{v}| \cos \theta}$ and $b=|\mathbf{v}| \sin \theta$. These come directly from right-triangle trigonometry.


$$
\begin{array}{ll}
\cos \theta=\frac{a}{|v|} & \sin \theta=\frac{b}{|v|} \\
|v| \cos \theta=a & |v| \sin \theta=b
\end{array}
$$

Example 5 Find the component form of the vector $\underline{v}$ of length 3 that makes an angle of $\frac{\pi}{4}$ with the positive $x$-axis.

$$
\begin{aligned}
\vec{V} & =\left\langle 3 \cos \frac{\pi}{4}, 3 \sin \frac{\pi}{4}\right\rangle \\
& =\left\langle\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{3}}{2}\right\rangle
\end{aligned}
$$

Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ be vectors and $k$ be a real number scalar.

$$
\begin{array}{cl}
\mathbf{0}=\langle 0,0\rangle & \text { The zero vector. Both components are } 0 . \\
\mathbf{u}+\mathbf{v}=\left\langle u_{1}, u_{2}\right\rangle+\left\langle v_{1}, v_{2}\right\rangle=\left\langle u_{1}+v_{1}, u_{2}+v_{2}\right\rangle & \text { Add the } x \text { components and add the } \mathrm{y} \text { components } \\
\mathbf{u}-\mathbf{v}=\left\langle u_{1}, u_{2}\right\rangle-\left\langle v_{1}, v_{2}\right\rangle=\left\langle u_{1}-v_{1}, u_{2}-v_{2}\right\rangle & \begin{array}{l}
\text { Subtract the } \mathrm{x} \text { components and subtract the } \mathrm{y} \\
\text { components. }
\end{array} \\
k \mathbf{v}=k\left\langle v_{1}, v_{2}\right\rangle=\left\langle k v_{1}, k v_{2}\right\rangle & \begin{array}{l}
\text { Multiply each component by the scalar }
\end{array}
\end{array}
$$

If $k=-1$, it reverses the direction of the vector, resulting in the opposite vector of the original.

Whenever you add or subtract vectors, the result is called the resultant vector.

c) $\left|\frac{1}{2} \mathbf{u}\right| \quad \frac{1}{2} u=\left\langle\frac{1}{2}, \frac{3}{2}\right\rangle$
$\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}$
$=\sqrt{\frac{1}{4}+\frac{9}{4}}=\sqrt{\frac{10}{4}}=\frac{\sqrt{10}}{2}$
Example 7 Sketch the indicated vector using the vectors to the right.

$2 \vec{a}=\langle 8,8\rangle$

## a) $\mathbf{a}+\mathbf{b}$

c) $\mathbf{a}-\mathbf{b}$

d) $a+2 b$

$\underline{b} b=\langle 4,0\rangle$

Multiplying vectors is not intuitive. It is similar to multiplying matrices. There are two ways to multiply vectors. We will learn one now called the dot product. The second one is called the cross product, which you will learn and use in Calculus III. Knowing how to calculate the dot product will allow us to find the angle between vectors.

## Dot Product

The dot product of vectors $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, denoted $\mathbf{u} \cdot \mathbf{v}$ is


Angle Between Vectors

If $\theta$ is the angle between the nonzero vectors $\mathbf{u}$ and $\mathbf{v}$, then

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \text { and } \theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right)
$$

Note: If two vectors are perpendicular, their dot product is 0 .

Example 8 Find the measure of $\angle A B C$ determined by the vertices $A(0,0), B(3,5)$, and $C(5,2)$.


$$
u \cdot v=|u||v| \cos \theta
$$

(1) $u \cdot v=-3 \cdot 2+-5 \cdot-3=-6+15=9$

2 vectors?
(2) $|v||v|=\sqrt{9+25} \cdot \sqrt{4+9}=\sqrt{34} \cdot \sqrt{13}$
(3) $\cos \theta=\frac{9}{\sqrt{34 \cdot \sqrt{13}}}$
(4) $\theta=\cos ^{-1}\left(\frac{9}{\sqrt{34} \cdot \sqrt{13}}\right)$
(5) $\theta=64.653^{\circ}$

Example 9 Find the unit vectors tangent and normal to the curve defined by the parametric equations $\frac{d}{d \theta}\left(\frac{t}{2}+1, \sqrt{t}+1\right)$, at the point where $t=4$.

$$
\begin{aligned}
x^{\prime}(t) & =\frac{1}{2} \\
y^{\prime}(t) & =\frac{1}{2} t^{-\frac{1}{2}} \\
& \text { or } \frac{1}{2 \sqrt{t}}
\end{aligned}
$$

$$
\frac{1}{\sqrt{\sqrt{2}}>} \rightarrow \sqrt{ }
$$

$\rightarrow \underset{\left.\substack{\text { unit }} \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle \text { or }\left\langle\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right\rangle}{\substack{\text { vector }}}$ tangent

$$
\left\langle\frac{1}{2}, \frac{1}{2 \sqrt{4}}>\right.
$$

$$
\sqrt{\frac{4}{16}+\frac{1}{16}}
$$

$$
<\frac{1}{2}, \frac{1}{4}>\rightarrow \operatorname{linit}_{\text {vector }}\left\langle\frac{1 / 2}{\sqrt{5} / 4}, \frac{1 / 4}{\sqrt{5} / 4}\right\rangle
$$

$\underset{\text { normal }}{\text { unit }}\left\langle\frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right\rangle$ or $\left\langle\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$

Example 10 Find the unit vectors tangent and normal to the curve defined by the parametric equations unit $(\sqrt{t}+1, t+1+2 \sqrt{t})$ at the point where $t=1$.

$$
\begin{aligned}
x^{\prime}(t) & =\frac{1}{2} t^{\frac{-1}{2} t} \\
& =\frac{1}{2 \sqrt{t}}
\end{aligned}
$$



$$
\therefore \sqrt{\frac{1}{4}+\frac{16}{4}}
$$

Normal

Example 11 A Boeing 727 airplane, flying due east at 500 mph in still air, encounters a 20 mph tailwind acting in the direction $60^{\circ}$ north of east. The airplane holds its compass heading due east but, because of the wind,
Example 11 A Boeing 727 airplane, flying due east at 500 mp
in the direction $60^{\circ}$ north of east. The airplane holds its comp
acquires a new ground speed and direction. What are they?

$$
\begin{aligned}
\vec{a}= & \langle 500,\rangle \\
\vec{w}= & \left\langle 20 \cos 60^{\circ}, 20 \sin 60^{\circ}\right\rangle \\
& <10,10 \sqrt{3}\rangle
\end{aligned}
$$

$$
\underset{\text { velocity }}{\text { ground }}=\langle 510,10 \sqrt{3}\rangle
$$

Speed $\sqrt{\left.510^{2}+(06)^{2}\right)}=510.294 \mathrm{mph}$

$$
\begin{array}{cc}
\left\langle\frac{\frac{1}{2}}{\frac{\sqrt{17}}{2}}, \frac{2}{\frac{\sqrt{17}}{2}}\right\rangle & \left\langle\frac{-4}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right\rangle \\
\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle & \left\langle\frac{4}{\sqrt{17}}, \frac{-1}{\sqrt{17}}\right\rangle
\end{array}
$$

