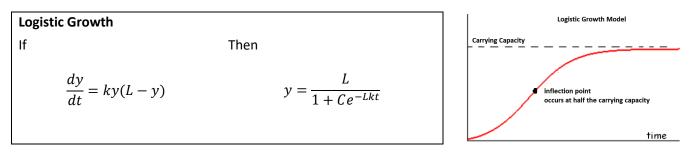
BC Calculus Logistic Growth Notesheet

Name: ___



To help you remember, think "Lice Minus Licked"

 \mathcal{O}

Notice the prominence of the carrying capacity value L in each form of the equation. This is very important, especially when asked for the limit as t approaches infinity or when asked to find the y-value when the y-values are increasing most rapidly, i.e. the inflection value, which occurs at half the carrying capacity $\left(y = \frac{L}{2}\right)$.

Example 1 The population of Alaska from 1900 to 2000 can be modeled by the following logistic equation.

$$\begin{aligned} y_{t}(t) &= \frac{895598}{1+71.57e^{-0.0516t}} \quad y_{t} = \frac{L}{1+ce^{1.Kt}} \end{aligned}$$
Where P is the population t years after 1900 with $t = 0$ corresponding to the year 1900.
a) What is the predicted population of Alaska in 2020? $P(1>0)$
 $t = |20| \quad (X = |20) \quad = 78 \mid 2 \mid 8 \quad \text{with}$
b) How fast was the population of Alaska changing in 1920? 1940? 1999? $P(1>0)$
 $dy = Math 8 \Rightarrow dx \mid 1 \mid x = 20$ for e^{-1} $dy \mid_{t=20}^{t} = 1,50008$
 $dy = Math 8 \Rightarrow dx \mid 1 \mid x = 20$ for e^{-1} $dy \mid_{t=20}^{t} = 1,50008$
c) When was the population of Alaska growing the fastest? What was the population then?
 $t \approx 82765 \quad (1982) \quad P(82765) = 447799$ $dt \mid_{t=10}^{t} = 9,74748$
d) What information does the equation tell us about the population of Alaska in the long run?
 $pyradhes \quad 895598 \quad Carrying Capacity \quad (Ena8down) \\ t \to \infty \quad (Creasing rate)$
 e^{1} When $P < 447799$, What is the sign of $\frac{dP}{dt}$ and $\frac{d^{2}P}{dt^{2}}$? What does this mean in the context of the problem?
 $\frac{dP}{dt} > 0$ $\frac{d^{2}P}{dt^{2}} < 0$ P is increasing rate.
 $\frac{dP}{dt} > 0$ $\frac{d^{2}P}{dt^{2}} < 0$ P is increasing rate.

On the AP exam, you may be given questions that require you to recognize the parameters of logistic growth for either equation or the differential equation written in a different format. This requires you to manipulate the equation to fit one of the two standard forms.

Example 2 The growth rate of a population P of bears in a newly established wildlife preserve is modeled by
the differential equation
$$\frac{dP}{dt} = 0.8P \left(1 - \frac{P}{100}\right)$$
, where t is measured in years $\frac{1}{100} P \left(100 - P\right)$
a) What is the carrying capacity for bears in this wildlife preserve?
 $\frac{dP}{dt} = \frac{3}{1000} P \left(100 - P\right)$
b) What is the bear population when $\frac{dP}{dt}$ has a maximum value? What does this mean in the context of the
problem?
($\frac{D}{dt} = \frac{1}{1000} P \left(100 - P\right)$
($\frac{D}{dt} = \frac{1}{1000} P \left(100 - P\right)$
b) What is the rate of change of the population when it is growing the fastest?
($\frac{D}{dt} = \frac{8}{1000} P \left(100 - 100 - 100 + 10$

Example 4 The rate at which the flu spreads through a community is modeled by the logistic differential equation $\frac{dP}{dt} = 0.001P(3000 - P)$, where t is measured in days, $t \ge 0$.

a) If
$$P(0) = 50$$
, solve for P as a function of t .

$$P = \frac{3000}{1 + ce^{-3000}(00)t} \int 50 = \frac{3000}{1 + ce^{-3000}(00)t^6} \int \frac{50c = 3000}{50} \frac{3000}{1 + ce^{-3000}(00)t^6} \int \frac{50c = 3000}{c = 59} \frac{3000}{1 + 59e^{-300}}$$
b) Use your solution from a) to find the size of the infected population when $t = 2$ days.

$$P(2) = \frac{3000}{1 + 59e^{-3(2)}} = 2,617,238$$
c) Use your solution from a) to find the number of days that have occurred when the flu is spreading the fastest. $\frac{1}{2} = \frac{3000}{2} = 1500$ i graph $P = y = 3000$ $y = 1500$ i $(cal cal ate intersection)$ i $t = 1.359$ days.