\qquad

In this section, we will learn how to find the length of polar curves given by

$$
r=f(\theta) \text { over the interval } \alpha \leq \theta \leq \beta
$$

where we assume the curve is traced exactly once. Just like arc length for functions in terms of x and arc length for parametric equations, we will use a formula. However, let's see where it comes from first. Just as we did when finding slope of tangent lines in polar coordinates, we will start by writing the curve in terms of a set of parametric equations by finding an x function and a y function.

Example 1: Derive the formula for polar arc length

The length of a curve with polar equation $r=f(\theta)$ over the interval $\alpha \leq \theta \leq \beta$ is

$$
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \quad \square, b \in
$$

Example 2 Find the length of the curve $r=2-2 \cos \theta$ over theanterval $0 \leq \theta \leq 2 \pi$.
\qquad

$$
\int \sqrt{(2-2 \cos \theta)^{2}+(2 \sin \theta)^{2}} d \theta
$$

$$
0
$$

$d r=-2 \sin \theta$
Example 3 Find the length of the curve $\frac{2}{r} \frac{2}{2} \cos \theta$ over the interval $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{(2 \cos \theta)^{2}+(-2 \sin \theta)^{2}} d \theta \approx 6.283
$$

$$
\begin{aligned}
& x=r \cos \theta \\
& \frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta+r(-\sin \theta) \\
& y=r \sin \theta \\
& \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta \\
& d s=r d \theta \\
& \left(\frac{d y}{d \theta}\right)^{2}=\left(\frac{d d t}{d \theta}\right)^{2} \sin ^{2} \theta+2 \frac{d x}{d x^{2}} \sin \theta+\frac{r \cos \theta+r^{2}+\cos ^{2} \theta}{2} \\
& \left(\frac{d r}{d \theta}\right)^{2} \sin ^{2} \theta+\left(\frac{d r}{d \theta}\right)^{2} \cos ^{2} \theta \\
& \left(\frac{d r}{d \theta}\right)^{2}\left(\sin ^{2} \theta \cos ^{2} \theta\right) \\
& \text { Polar Arc Length }
\end{aligned}
$$

