\qquad

1. Find $d r / d \theta$ of the curve $r=-1+\sin \theta$ at $\theta=0$ and $\theta=\pi$.

$$
\begin{array}{ll}
\frac{d r}{d \theta}=\cos \theta & \left.\frac{d r}{d \theta}\right|_{\theta=0} ^{1 . \sin \theta}=0 \cos 0=1
\end{array}
$$

$$
\left.\frac{d r}{d \theta}\right|_{\theta=\pi}=\cos \pi=-1
$$

2. Find the slope of the curve $r=-1+\sin \theta$ at $\theta=0$ and $\theta=-\frac{\pi}{2}$.

$$
x=r \cos \theta
$$

$y=r \sin \theta$

$$
\begin{array}{lll}
y=r \sin \theta & \frac{d y}{d \theta}=-\cos \theta+2 \sin \theta \cos \theta & x=(-1+\sin \theta) \cos \theta \\
y=(-1+\sin \theta)(\sin \theta) & \left.\frac{d y}{d x}\right|_{\theta=0}=\frac{-1+2(0)(1)}{0-(0)^{2}+(1)^{2}}=-1 & x=-\cos \theta+\sin \theta \cos \theta \\
& \frac{d x}{2}=\sin \theta+\sin \theta(-\sin \theta)
\end{array}
$$

$$
y=-\sin \theta+\sin ^{2} \theta\left[\frac{d y}{d x}=\frac{d / d \theta}{d x} d \theta\left|\frac{d y}{d x}\right|_{\theta=-\frac{\pi}{2}}=\frac{0+2(-1)(0)}{-1-(-1)^{2}+0}=\frac{0}{-2}=\frac{d x}{d \theta}=\sin \theta+\sin \theta(-\sin \theta)+\cos \right.
$$

$(x, y) \frac{d y}{d x} \quad$ Find the equation of the tangent line to the curve $r=3 \cos \theta$ when $r=0$ and $0 \leq \theta \leq 2 \pi$

$$
x=r \cos \theta=3 \cos \theta \cos \theta=3 \cos ^{2} \theta \rightarrow \frac{d x}{d \theta}=6 \cos \theta(-\sin \theta)=-6 \cos \theta \sin \theta
$$

$$
\left.\begin{aligned}
& 0=3 \cos \theta \\
& 0=\cos \theta
\end{aligned} \quad \begin{aligned}
& x\left(\frac{\pi}{2}\right)=3(0)^{2}=0 \\
& d y 1 \quad 3\left(\frac{\pi}{2}\right)=3(0)(1)=0 \\
& 3\left(0^{2}-1^{2}\right) \\
& =-3
\end{aligned} \quad \begin{aligned}
& x\left(\frac{3 \pi}{2}\right)=0 \\
& y\left(\frac{3 \pi}{2}\right)=0
\end{aligned} \quad \frac{d y}{d x}\right|_{\theta=\frac{\pi}{2}}=\frac{-3}{0} \rightarrow \text { ind. }
$$

Vertical line at $x=0$
4. Find values of θ where the tangent lines to the curve $r=2 \sin \theta$ are horizontal and vertical ave $0 \leq \theta \leq \pi$.

Hor if $\frac{d y}{d \theta}=0\left(\right.$ and $\left.\frac{d x}{d B} \neq 0\right)$
5. Find two equivalent polar coordinates and the Rectangular coordinates for the polar coordinate pair.

$$
\begin{array}{rl|lll}
\left(-3, \frac{2 \pi}{3}\right) & & x=r \cos \theta & & y=r \sin \theta \\
\left(-3, \frac{8 \pi}{3}\right) & \left(-3,-\frac{4 \pi}{3}\right) & x=-3 \cos \left(\frac{2 \pi}{3}\right) & & y=-3 \sin \left(\frac{2 \pi}{3}\right) \\
& =-3(-1 / 2) & & =-3(\sqrt{3} / 2) \\
\left(3,-\frac{\pi}{3}\right) & \left(3, \frac{5 \pi}{3}\right) & & =\frac{3}{2} & \\
& & =-\frac{3 \sqrt{3}}{2}
\end{array} \quad\left(\frac{3}{2}, \frac{-3 \sqrt{3}}{2}\right)
$$

$$
\begin{aligned}
& \text { 6. Find two equivalent pairs of polar coordinates for the rectangular coordinate pair. } \\
& \begin{array}{llll}
(-1,1) & \tan \theta=\frac{1}{-1} & \left(\sqrt{2}, \frac{3 \pi}{4}\right) & \left(\sqrt{2},-\frac{5 \pi}{4}\right) \\
x^{2}+y^{2}=r^{2} & \tan \theta=-1 & \left(-\sqrt{2}, \frac{7 \pi}{4}\right) & \left(\sqrt{2},-\frac{\pi}{4}\right) \\
(-1)^{2}+(1)^{2}=r^{2} & \theta=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4} & & \\
1+1=r^{2} & & & \\
2=r^{2} \rightarrow r= \pm \sqrt{2} & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d \theta}=2(\sin \theta \cdot(-\sin \theta)+\cos \theta \cdot \cos \theta)=2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{aligned}
$$

7. Replace the polar equation with an equivalent rectangular equation.
a) $r=\frac{5}{\sin \theta-2 \cos \theta}$

$$
\begin{aligned}
& r(\sin \theta-2 \cos \theta)=5 \\
& r \sin \theta-2 r \cos \theta=5 \\
& y-2 x=5 \\
& \text { or } y=2 x+5
\end{aligned}
$$

b) Replace the rectangular equation with an equivalent polar equation. Your equation should be in $r=$ form.

$$
\begin{aligned}
& y^{2}+(x-3)^{2}=9 \\
& y^{2}+x^{2}-6 x+9=9 \\
& \frac{r^{2}-6 r \cos \theta}{r}=\frac{0}{r} \quad r=6 \cos \theta \\
& r-6 \cos \theta=0
\end{aligned}
$$

8. Find an equation of the tangent to the curve $x=1+\ln t$ and $y=t^{2}+t$ at the point $(1,2)$. y

$$
\begin{array}{ll}
x, y, \frac{d y}{d x} & \frac{d x}{d t}=\frac{1}{t} \quad \frac{d y}{d t}=2 t+1 \\
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} & \left.\frac{d y}{d x}=\frac{2 t+1}{1 / t}=2 t^{2}+t \quad \right\rvert\,+\ln t=1 \rightarrow t=1 \\
t^{2}+t=2 \rightarrow \ln l=0 \\
\left.\frac{d y}{d x}\right|_{t=1}=2(1)^{2}+1=3 & y-2=3(x-1) \\
\text { 9. Find } \frac{d y}{2} \text { and } d^{2} y / d x^{2} \text { of the curve defined by the parametric functions } x=t^{3}+1 \text { and } y=t^{2}-t .
\end{array}
$$

9. Find $\frac{d y}{d x}$ and $d^{2} y / d x^{2}$ of the curve defined by the parametric functions $x=t^{3}+1$ and $y=t^{2}-t$.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t-1}{3 t^{2}} \rightarrow \begin{gathered}
\text { since I'm taking the } \\
\text { derivative again, Ill } \\
\text { spit apart to avoid quotient } \\
\text { rule }
\end{gathered} \rightarrow \frac{2}{3} t^{-1}-\frac{1}{3} t^{-2}
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{-\frac{2}{3} t^{-2}+\frac{2}{3} t^{-3}}{3 t^{2}} \rightarrow \text { If mult.choice } \rightarrow \frac{-2}{9} t^{-4}+\frac{2}{9} t^{-5}
$$

10. Find the length of the curve defined by the functions $x=1+3 t^{2}$ and $y=4+2 t^{3}$ over $0 \leq t \leq 2$.

$$
\begin{aligned}
& \int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} d t} \frac{d x}{d t}=6 t \quad \frac{d y}{d t}=6 t^{2} \\
& \int_{0}^{2} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t=\text { M.C }=\int_{0}^{2} \sqrt{36 t^{2}+36 t^{4}} d t \sim \sim \sim 20.361
\end{aligned}
$$

