AP Calculus Polar Curves and Derivatives Homework B Name: $\frac{dr}{d\theta}\Big|_{\theta=0} = \cos \theta = \frac{1}{2} \quad \frac{dr}{d\theta}\Big|_{\theta=0} = \frac{1}{2}$ 1. Find $dr/d\theta$ of the curve $r = -1 + sin\theta$ at $\theta = 0$ and $\theta = \pi$. $\frac{dr}{dr} = cos \Theta$ 2. Find the slope of the curve $r = -1 + \sin\theta$ at $\theta = 0$ and $\theta = -\frac{\pi}{2}$. $X = r\cos\theta$ $S \ln \theta$ $= -\cos\theta + 2\sin\theta \cos\theta$ $X = (-1 + \sin\theta) \cos\theta$ Y=rsin0

$\left(\begin{array}{c}2\pi\end{array}\right)$	x=rcoso	y=rsino	
$(-3, \frac{-3}{3})$	X=-3cos(걜)	y=-3SIN(2ुर्ग))
(-3,智) (-3,学)	=-3(-1/2)	=-3(53/2)	
$(3, -\frac{\pi}{3})$ $(3, 5\frac{\pi}{3})$	= 3/2	$=-\frac{3\sqrt{3}}{2}$	$\left(\frac{3}{2},\frac{-3\sqrt{3}}{2}\right)$
6. Find two equivalent pairs of polar coordi (-1,1) $+ah0 = -$	inates for the rectangular co	ordinate pair. $\left(\int_{\mathbf{Z}} \underbrace{3\pi}_{4} \right)$	(元,-聖)
$\chi - \gamma = r$ tang- $(-1)^{2} + (1)^{2} = r^{2}$ g	= -1 = 311 or <u>71</u> 	(-反)理)	(FZ, - Z)
1+1=12 +5	ч I		

 $2=r^2 \rightarrow r^{=\frac{1}{2}\sqrt{2}}$

7. Replace the polar equation with an equivalent rectangular equation.

5

a)
$$r = \frac{5}{\sin\theta - 2\cos\theta}$$

r(sin $\theta - 2\cos\theta$) =

$$rsin\theta - 2rcos\theta = 9$$

$$\sqrt{y - 2x = 5}$$

$$\sigma \sqrt{y = 2x + 5}$$

b) Replace the rectangular equation with an equivalent polar equation. Your equation should be in r = form.

$$y^{2} + (x-3)^{2} = 9$$

$$y^{2} + x^{2} - 6x + 9 = 9$$

$$r^{2} - \frac{6r\cos 89}{r} = 0$$

$$r - 6\cos 89 = 0$$
8. Find an equation of the tangent to the curve $x = 1 + \ln t$ and $y = t^{2} + t$ at the point $(1, 2)$, y

$$x_{1}y_{1} \frac{dy}{dx} \qquad \frac{dx}{dt} = \frac{1}{t} \qquad \frac{dy}{dt} = 2t + 1$$

$$|+g_{n}t = 1 - t = |b|c g_{n}| = 0$$

$$\frac{dy}{dx} = \frac{dy}{dt} = \frac{2t + 1}{dx} = 2t^{2} + t$$

$$\frac{dy}{dx} = \frac{dy}{dt} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t}{dx} + \frac{1}{dx} = \frac{2t^{2} + t}{dx} = 2t^{2} + t$$

$$\frac{dy}{dx} = \frac{2t + 1}{dx} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{dx} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{dx} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} = \frac{2t + 1}{3t^{2}} = 2(1)^{2} + 1 = 3$$

$$\frac{dy}{dx} = \frac{2t + 1}{3t^{2}} =$$