\qquad

1. What is the radius of convergence of a power series? How do you find it?
the distance from the center to the
(X-values) edge of convergence edge of conte do the
ratio test all x-values that allow convergence
2. Find the radius of convergence and interval of convergence For bach of the following series.
3. What is the interval of convergence of a power series? How do you find it? ratiotes \qquad ,
4. Find a power series representation for the following functions and find the interval of convergence. Include the firsthon-zero terms and the general term,
a) $\begin{array}{ll}f(x)=\frac{3}{1-3 x}=\frac{a_{1}}{1-r} & \begin{array}{l}a_{1}=3 \\ r\end{array}=3 x \quad \sum_{n=0}^{\infty}\end{array}$

$$
3(3 x)^{n}
$$

$$
3+9 x+27 x^{2}+81 x^{3}+\ldots
$$

to findradius $\quad|3 x|<1 \quad-1 / 3<x<1 / 3$
b) $f(x)=\frac{x}{2 x^{2}+1}=\frac{a_{1}}{1-r}=\frac{x}{1-\left(-2 x^{2}\right)}$

$$
x-2 x^{3}+4 x^{5}-8 x^{7}+\ldots+(-2)^{n} \cdot x^{2 n+1}
$$

$$
\begin{array}{rlrl}
& a_{1} & =x \\
r & =-2 x^{2} \quad \sum_{n=0}^{\infty} & x\left(-2 x^{2}\right)^{n} \\
\left|-2 x^{2}\right| & \mid<1 \quad \text { I.o.c. } & (-2)^{n}\left(x^{2}\right)^{n} \\
(-2)^{n} \cdot x^{2 n+1}
\end{array}
$$

c) $f(x)=\frac{2 / 3}{\frac{3}{3}-x / 3}=\frac{2 / 3}{1-\frac{x}{3}} \quad \begin{array}{ll}a_{1}=2 / 3 \\ r=x / 3\end{array}$ $\left|x^{2}\right|<1 / 2 \quad-\frac{\sqrt{2}}{2} x<\frac{\sqrt{2}}{2}$

$$
\sum_{n=0}^{\infty} \frac{2}{3}\left(\frac{x}{3}\right)^{n} \rightarrow \frac{2}{3}+\frac{2 x}{9}+\frac{2 x^{2}}{27}+\frac{2 x^{3}}{81}+\cdots
$$

$$
\left|\frac{x}{3}\right|<1 \quad|x|<3
$$

d) $f(x)=\frac{5}{1+x^{3}} \quad a_{1}=5$

$$
-3<x<3
$$

$$
\frac{5}{1+x^{3}}=\frac{a_{1}}{1-r}=\frac{5}{1-\left(-x^{3}\right)} \quad r=-x^{3}
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} 5\left(-x^{3}\right)^{n}=5-5 x^{3}+5 x^{6}-5 x^{9}+\ldots \\
\left|-x^{3}\right|<1 \quad-1<x<1
\end{gathered}
$$

$$
\left|-x^{3}\right|<1 \quad-1<x<1
$$

5. Find a power series representation of $f(x)=-\frac{1}{(2+x)^{2}}$ by using $\int \frac{-1}{(2+x)^{2}} d x=\frac{1}{2+x}+C$
6. The series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence.

$$
\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n} \cdot x^{n+1}}{n+1} \cdot \frac{n}{(-3)^{n-1} \cdot x^{n}}\right| \begin{aligned}
& \lim _{n \rightarrow \infty}|-3 x| \\
& |-3 x|<1
\end{aligned} \begin{aligned}
& \left.\begin{array}{l}
\text { a) I.O.C } \\
\begin{array}{l}
\text { check } x=-1 / 3 \\
\text { CHeck } x=1 / 3 \text { converge }
\end{array}
\end{array}\right)-1 / 3<x \leqslant 1 / 3
\end{aligned}
$$

a) Use the ratio test to find R.
b) Write the first four nonzero terms of the series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.
Write the first (4) terms of $f \rightarrow x-\frac{3}{2} x^{2}+3 x^{3}-\frac{27}{4} x^{4}$

$$
f^{\prime} \rightarrow 1-3 x+9 x^{2}-27 x^{3}
$$

$\left.\begin{array}{c}\text { rational function } \\ \text { for } f^{\prime}\end{array} \frac{1}{1+3 x} \rightarrow \begin{array}{c}\text { rational } \\ \text { function for } f \\ \text { (interaral!) }\end{array}\right)=\frac{1}{3} y_{n}|1+3 x|$

$$
\begin{aligned}
& \frac{1}{2+x} \rightarrow \frac{1 / 2}{1-(-x / 2)} \quad \sum_{n=0}^{\infty} \frac{1}{2} \cdot\left(-\frac{x}{2}\right)^{n} \\
& \begin{array}{l}
\left.\frac{1}{2} \cdot(-1)^{n} \cdot\left(\frac{1}{2}\right)^{n}(x)^{n} \text { take derivative } \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n+1}(-1)^{n} \cdot n x^{n-1} 12\right)^{n+1}(-1)^{n} \cdot x^{n} \quad \text { (respect }
\end{array} \\
& \left(\frac{1}{2}\right)^{n+1}(-1)^{n} \cdot x^{n} \quad\left(w / \text { respect } t_{0} x\right)^{n} \\
& \text { 6. Find a power series representation of } f(x)=\tan ^{-1} x \text { by using } f^{\prime}(x)=\frac{1}{1+x^{2}} \text {. } \\
& \begin{array}{l}
\text { 6. Find a power series representation of } f(x)=\tan ^{-1} x \text { by using } f^{\prime}(x)=\frac{1}{1+x^{2}} . \\
\frac{1}{1-\left(-x^{2}\right)} \sum_{n=0}^{\infty}(1)\left(-x^{2}\right)^{n}(-1)^{n} x^{2 n} \quad \int(-1)^{n} x^{2 n} \rightarrow \frac{(-1)^{n} \cdot x^{2 n+1}}{2 n+1}
\end{array}
\end{aligned}
$$

