Taylor Polynomials can be used to approximate other elementary functions such as $y=\sin x, y=e^{x}$, and $y=\ln x$.

$$
f(0)=0
$$

Example 1 Find the equation of the tangent line for $f(x)=\sin x$ at $x=0$, then use it to approximate $\sin (0.2)$. Is this an over or under approximation of $\sin (0.2)$?

TMMOBSEBTB

$$
f^{\prime}(x)=\cos x \quad y-0=1(x-0)
$$

The equation of the tangent line used in example 1 is called a first degree Taylor polynomial. Taylor polynomials of higher degree can be used to obtain increasingly better approximations of non-polynomial functions with a certain radius from a center of approximation $x=c$.

$$
f^{\prime}(0)=1
$$

$$
y=x \quad \sin (.2) \approx .2
$$

Definition of an nth degree Taylor Polynomial
$0 .=1 \quad$ If f has n derivatives at $x=c$, then the polynomial
If f has n derivatives at $x=c$, then the polynomial

$$
P_{n}(x)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}, \quad \text {. }}{n}
$$

is called the nth degree Taylor polynomial for f centered at c.
Note 1: A first-degree Taylor polynomial is a tangent line to f at c.
Note 2: $\frac{f^{(n)}(c)}{n!}$ is the coefficient of the $(x-c)^{n}$ term.
Definition of nth degree Maclaurin Polynomial \rightarrow Just easy Taylor polynomials If the Taylor polynomial is centered at $0(c=0)$, then

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x)+\frac{f^{\prime \prime}(c)}{2!}(x)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x)^{n}
$$

is called the nth degree Maclaurin polynomial for f.

Example 3 Find the Maclaurin polynomial of degree $\underline{n=7}$ for $f(x)=\sin x$. Then use $P_{7}(x)$ to approximate the value of $\sin (0.1)$ using correct notation. Find the error for your approximation.

$$
\begin{array}{ll}
f(x)=\sin x=f^{\prime \prime \prime \prime}(x) & f(0)=0 \\
f^{\prime}(x)=\cos x=f^{5}(x) & f^{\prime}(0)=1
\end{array}
$$

Example 5 Find the Maclaurin polynomial of degree $n=7$ for $f(x)=\cos x$. Use it to find the first four nonzero

$$
\begin{aligned}
& \text { terms and the nth term for the Maclaurin series for } f(x)=\cos x \text {. } \\
& f(x)=\cos x=f^{4}(x) \quad f(0)=1=f^{4}(0) \\
& f^{\prime}(x)=-\sin x=f^{5}(x) \quad f^{\prime}(0)=0=f^{5}(0) \\
& f^{\prime \prime}(x)=-\cos x=f^{b}(x) \quad f^{\prime \prime}(0)=-1=f^{6}(0) \\
& f^{\prime \prime \prime}(x)=\sin x=f^{7}(x) \quad f^{\prime \prime \prime}(0)=0=f^{7}(0) \\
& { }_{h}^{\cos x}(x)=1+0 x-\frac{1 x^{2}}{2!}+\frac{0 x^{3}}{3!}+\frac{1 x^{4}}{4!} \\
& \frac{+0 x^{5}}{5!}-\frac{1 x^{6}}{6!}+\frac{0 x^{7}}{7!}
\end{aligned}
$$

Example 6 Find the Maclaurin polynomial of degree $n=4$ for $f(x)=e^{x}$. Use it to find the first four non-zero terms and the nth term for the Maclaurin series for $\overline{f(x)}=e^{x}$.

$$
\begin{aligned}
& f(x)=e^{x}=f^{\prime}(x)=f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=f^{4}(x) \\
& f(0)=e^{0}=1=f^{\prime}(0)=f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=f^{4}(0) \\
& P_{4}(x)=1+1 x+\frac{1 x^{2}}{2!}+\frac{1 x^{3}}{3!}+\frac{1 x^{4}}{4!} \quad \text { general } \quad \text { term } \rightarrow \frac{x^{n}}{n!} J^{n \geq 0}
\end{aligned}
$$

Example 7 Find the Taylor polynomial of degree $n=4$ for $f(x)=\ln x$ centered at $c=1$. Then use $P_{4}(x)$ to

$$
\left.\begin{array}{l}
f(x)=\ln x \rightarrow f(1)=0 \quad f^{4}(x)=-\frac{6}{x^{4}} \rightarrow f^{\prime \prime}(1)=-6 \\
f^{\prime}(x)=\frac{1}{x} \rightarrow f^{\prime}(1)=1 \\
f^{\prime \prime}(x)=-\frac{1}{x^{2}} \rightarrow f^{\prime \prime}(1)=-1 \\
f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} \rightarrow f^{\prime \prime \prime}(1)=2
\end{array} \quad P_{4}(x)=0+1(x-1)-\frac{1(x-1)^{2}}{2!}+\frac{2(x-1)^{3}}{3!}-\frac{6(x-1)^{4}}{4!}\right)
$$

Example 8 Suppose that g is a function which has continuous derivatives, and that $g(2)=3, g^{\prime}(2)=-4$,
$g^{\prime \prime}(2)=7$, and $g^{\prime \prime \prime}(2)=-5$. Write a Taylor polynomial or degree 3 for g centered at 2 .

$$
g(x) \approx P_{3}(x)=3-4(x-2)+\frac{7(x-2)^{2}}{2!}-\frac{5(x-2)^{3}}{3!}
$$

Example 9 Let $P(x)=7-3(x-4)+5(x-4)^{2}-2(x-4)^{3}+6(x-4)^{4}$ be the $4^{\text {th }}$ degree Taylor polynomial for the function f about $x=4$. Assume f has derivatives of all orders for all real numbers.
a) Find $f(4)$ and $\underset{\begin{array}{c}\text { comes } \\ \text { from } \\ \text { this term }\end{array}}{f^{\prime \prime \prime}(4) \rightarrow 2(x-4)^{3}}=\frac{f^{\prime \prime \prime}(4)(x-4)^{3}}{3!} \rightarrow-2=\frac{f^{\prime \prime \prime}(4)}{6} \rightarrow f^{\prime \prime \prime}(4)=-12$
b) Write the second-degree Taylor polynomial for f^{\prime} about $x=4$ and use it to approximate $f^{\prime}(4.3)$.

$$
P(x)=-3+10(x-4)-6(x-4)^{2} \quad f^{\prime}(4.3) \approx-3+10(.3)-6(.3)^{2}=-.54
$$

$g^{\prime}(x)=f(x)$ Write the fourth-degree Taylor polynomial for $g(x)=\int_{4}^{x} f(t) d t$ about $x=4$. Integrating my
original
$\int_{4}^{x} 7 d t=\left.7 t\right|_{4} ^{x}=7(x-4)^{x}$ $\begin{aligned} & \text { orig gin series } \\ & \text { tartar step at a time }\end{aligned} \int_{4}^{x}-3(t-4) d t=\left.\frac{-3(t-4)^{2}}{2}\right|_{4} ^{x}=\frac{-3(x-4)^{2}}{2}-\left(\frac{-3}{2}(4-4)^{2}\right)=\frac{-3}{2}(x-4)^{2}$ (d) Can $f(3)$ be determined from the information given? Justify your answer: d.) Noble the series is centered at $x=4$ so Ionly know whats
happening at 4 , not 3 .

