BC Calculus Taylor Series Notesheet

3'

51

Name:

Example 3 Find the Maclaurin polynomial of degree $\underline{n = 7}$ for $f(x) = \sin x$. Then use $P_7(x)$ to approximate the value of $\sin(0.1)$ using correct notation. Find the error for your approximation.

$f(x) = \sin \chi = \overline{f''''(x)}$	f(0) = 0	$P_{7}(x) = 0$	$+1x+0x^{2}$	$+ (-1) \times$
$f'(x) = \cos x = f^{s}(x)$	$f_{1}(0) = 1$		21	31
	f''(o) = O	$+ Ox^{\dagger}$	$+ \frac{1x^{5}}{51} + \frac{02}{6}$	x^{b} + (-) \vec{x}
$f''(x) = -\sin x = f'(x)$	c'''(.) - 1	· · · · · · · · · · · · · · · · · · ·	.	
$f'''(x) = -\cos x = f'(x)$	F'''(0) = - [Sin($(1) \approx P_{\eta}(1) = 1$	$-(1)^{3}+(1)^{5}(1)^{7}$
$f'''(x) = -\cos x = f'(x)$ Sin $\chi \approx P_1(x) = \lambda$ Example 4 List the first for	$\langle -\underline{x}^3 + \underline{x}^2 \rangle$	$r - \frac{x}{2} = \frac{1}{2}$	099 8 33 4166	inor is leas ,
Example 4 List the first for	Ir non-zero terms and th	e nth term for the Macla	aurin series for $f(x) \neq$	sin x. than calcular Capability
3 5	Г	()n-1 2m-1	$C \rightarrow I$	
X - X + X	<u>X</u> + +	$(-1) \times 2^{n-1}$	for n21	

(2n-1)'

$$\begin{aligned} & (OS \times \mathcal{L}^{2} \cap (X)) = 1 - \frac{X^{2}}{21} + \frac{X^{3}}{41} - \frac{X^{5}}{40} \int_{X^{5}}^{X^{5}} \int_{X^{5}}^{Y^{5}} \int_{X^{5$$