\qquad

There are 3 Maclaurin series that show up so often that it is a good idea to commit them to memory.
Maclaurin Series for $f(x)=e^{x}$

$$
f(x)=e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Maclaurin Series for $\boldsymbol{f}(\boldsymbol{x})=\sin \boldsymbol{x}$

$$
f(x)=\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Maclaurin Series for $f(x)=\cos x$

$$
f(x)=\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

If these series have been committed to memory, then they can be conveniently manipulated to find series representations of similar functions.

You can manipulate these series by using the following techniques:

Techniques for Manipulating Series

1. Substituting into a series for x
2. Multiply or divide the series by a constant and/or variable.
3. Add or subtract 2 series.
4. Differentiate or integrate a series, which may change the interval, but not the radius of convergence.
5. Recognize the series as the sum of a geometric power series.

Example 1 Find a Maclaurin series for $f(x)=\sin \left(x^{2}\right)$. Find the first four nonzero terms and the general term. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

Example 2 Find a Maclaurin series for $f(x)=x \cos (x)$. Find the first four nonzero terms and the general term.

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& x \cdot \cos x=x-\frac{x^{3}}{2!}+\frac{x^{5}}{4!}-\frac{x^{7}}{6!}+\ldots+\frac{(-1)^{n} x^{2 n+1}!}{(2 n)!}
\end{aligned}
$$

Example 3 Find a Maclaurin series for $f(x)=4 e^{x^{2}}$ Find the first four nonzero terms and the general term.

Example 4 Find the first 3 nonzero terms in the Maclaurin series for $f(x)=\rho^{x} \sin x$.

Series Free Response Examples
Example 5 The function g has derivatives of all orders, and the Maclaurin series for g is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots
$$

a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{2 n+5} \cdot \frac{2 n+3}{(-1)^{2} x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1) x^{2}(2 n+3)}{(2 n+5)}\right| \rightarrow\left|x^{2}\right|<1-1 \leq x \leq 1 \\
& \text { cHeck: } x=-1 \rightarrow \frac{(-1)^{3 n+1}}{2 n+3} \rightarrow \text { Converges } \\
& \text { CST }
\end{aligned} \quad \text { CHeck } x=1 \frac{(-1)^{n}}{2 n+3} \begin{gathered}
\text { converges AST }
\end{gathered}
$$

b) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute
 this approximation differs from $g\left(\frac{1}{2}\right)$ by less that $\frac{1}{200}$.

$$
\left|g\left(\frac{1}{2}\right)-\frac{17}{120}\right| \leqslant \frac{\left(\frac{1}{2}\right)^{5}}{7} \rightarrow \frac{1}{32} \cdot \frac{1}{2} \rightarrow \frac{1}{224}<\frac{1}{200}
$$

c) Write the first three nonzero terms and the general term of the Maclaurin series fo $g^{\prime}(x)$.

$$
\frac{1}{3}-\frac{3 x^{2}}{5}+\frac{5 x^{2}}{7} \frac{(-1)(2 n+1) x^{2 n}}{2 n+3}
$$

Example 6 A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f about $x=0$. Cmaclawrin)
a) It is known that $f(0)=-4$ and $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.

$$
\begin{aligned}
& \text { a) It is known that } f(0)=-4 \text { no }\left(P_{1}\left(\frac{1}{2}\right)=-3 \text {. show that } f^{\prime}(0)=2 .\right. \\
& P_{1}(x)=f(0)+f^{\prime}(0) \cdot x \quad\left(=f^{\prime}(0) \cdot \frac{1}{2} \rightarrow \text { multiply by } 2\right.
\end{aligned}
$$

$$
-3=-4+f^{\prime}(0) \cdot \frac{1}{2}
$$

$$
P_{3}(x)=-4+2 x-\frac{\frac{2}{3} x^{2}}{3}+\frac{\frac{1}{3} x^{3}}{6}
$$

$$
\begin{array}{r}
2= \\
x^{3} \\
\hline
\end{array}
$$

b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the thirddegree Taylor polynomial for h about $x=0$.

$$
\text { Now } \int-4+4 x-\frac{4 x^{2}}{3}+\frac{8 x^{3}}{18} \quad(\text { replacing } x \omega / 2 x)
$$

