Calculus Test Review

Name:

1a. [3 marks]
Let $y=\left(x^{3}+x\right)^{\frac{3}{2}}$.
Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
1b. [3 marks]
Hence find $\int\left(3 x^{2}+1\right) \sqrt{x^{3}+x} \mathrm{~d} x$.
1c. [2 marks]
Consider the functions $f(x)=\sqrt{x^{3}+x}$ and $g(x)=6-3 x^{2} \sqrt{x^{3}+x}$, for $x \geq 0$.
The graphs of f and g are shown in the following diagram.

The shaded region R is enclosed by the graphs of f, g, the y-axis and $x=1$.
Write down an expression for the area of R.

1d. [6 marks]
Hence find the exact area of R.
2. [8 marks]

Let $f(x)=\frac{6-2 x}{\sqrt{16+6 x-x^{2}}}$. The following diagram shows part of the graph of f.

The region R is enclosed by the graph of f, the x-axis, and the y-axis. Find the area of R.
3a. [3 marks]
Let $f(x)=\frac{1}{\sqrt{2 x-1}}$, for $x>\frac{1}{2}$.
Find $\int(f(x))^{2} \mathrm{~d} x$.

3b. [4 marks]
Part of the graph of f is shown in the following diagram.

The shaded region R is enclosed by the graph of f, the x-axis, and the lines $x=1$ and $x=9$. Find the volume of the solid formed when R is revolved 360° about the x-axis.
4. [7 marks]

Consider $f(x), g(x)$ and $h(x)$, for $x \in \mathbb{R}$ where $h(x)=(f \circ g)(x)$.
Given that $g(3)=7, g^{\prime}(3)=4$ and $f^{\prime}(7)=-5$, find the gradient of the normal to the curve of h at $x=3$.
5a. [6 marks]
A function $f(x)$ has derivative $f^{\prime}(x)=3 x^{2}+18 x$. The graph of f has an x-intercept at $x=-1$.
Find $f(x)$.
5b. [4 marks]
The graph of f has a point of inflexion at $x=p$. Find p.
5c. [3 marks]
Find the values of x for which the graph of f is concave-down.
6a. [2 marks]
Let $f(x)=\frac{16}{x}$. The line L is tangent to the graph of f at $x=8$.
Find the gradient of L.

6b. [2 marks]
L can be expressed in the form $\boldsymbol{r}=\binom{8}{2}+\boldsymbol{t} \boldsymbol{u}$.
Find \boldsymbol{u}.
6c. [5 marks]
The direction vector of $y=x$ is $\binom{1}{1}$.
Find the acute angle between $y=x$ and L.
6d. [3 marks]
Find $(f \circ f)(x)$.
6e. [1 mark]
Hence, write down $f^{-1}(x)$.
6f. [3 marks]
Hence or otherwise, find the obtuse angle formed by the tangent line to f at $x=8$ and the tangent line to f at $x=2$.

7a. [2 marks]
Let $f(x)=4-2 \mathrm{e}^{x}$. The following diagram shows part of the graph of f.

Find the x-intercept of the graph of f.

7b. [3 marks]
The region enclosed by the graph of f, the x-axis and the y-axis is rotated 360 obout the x-axis. Find the volume of the solid formed.

8a. [2 marks]
In this question distance is in centimetres and time is in seconds.
Particle A is moving along a straight line such that its displacement from a point P , after t seconds, is given by $s_{\mathrm{A}}=15-t-6 t^{3} \mathrm{e}^{-0.8 t}, 0 \leq t \leq 25$. This is shown in the following diagram.

Find the initial displacement of particle A from point P .
8b. [2 marks]
Find the value of t when particle A first reaches point P .
8c. [2 marks]
Find the value of t when particle A first changes direction.
8d. [3 marks]
Find the total distance travelled by particle A in the first 3 seconds.
8e. [5 marks]
Another particle, B , moves along the same line, starting at the same time as particle A . The velocity of particle B is given by $v_{\mathrm{B}}=8-2 t, 0 \leq t \leq 25$.

Given that particles A and B start at the same point, find the displacement function s_{B} for particle B.
8f. [2 marks]
Find the other value of t when particles A and B meet.

