## Calculus Test Review [86 marks]

1 a.
[3 marks]

## Markscheme

evidence of choosing chain rule (M1)
eg $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, u=x^{3}+x, u^{\prime}=3 x^{2}+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2}\left(x^{3}+x\right)^{\frac{1}{2}}\left(3 x^{2}+1\right) \quad\left(=\frac{3}{2} \sqrt{x^{3}+x}\left(3 x^{2}+1\right)\right) \quad$ A2 N3
[3 marks]

1b.

## Markscheme

integrating by inspection from (a) or by substitution (M1)
eg $\frac{2}{3} \int \frac{3}{2}\left(3 x^{2}+1\right) \sqrt{x^{3}+x} \mathrm{~d} x, u=x^{3}+x, \frac{\mathrm{~d} u}{\mathrm{~d} x}=3 x^{2}+1, \int u^{\frac{1}{2}}, \frac{u^{\frac{3}{2}}}{1.5}$
correct integrated expression in terms of $x$ A2 N3
eg $\frac{2}{3}\left(x^{3}+x\right)^{\frac{3}{2}}+C, \frac{\left(x^{3}+x\right)^{1.5}}{1.5}+C$
[3 marks]

1c.

## Markscheme

integrating and subtracting functions (in any order)
(M1)
eg $\int g-f, \int f-\int g$
correct integral (including limits, accept absence of $\mathrm{d} x$ ) A1 N2
eg $\int_{0}^{1}(g-f) \mathrm{d} x, \int_{0}^{1} 6-3 x^{2} \sqrt{x^{3}+x}-\sqrt{x^{3}+x} \mathrm{~d} x, \int_{0}^{1} g(x)-\int_{0}^{1} f(x)$
[2 marks]

1d.

## Markscheme

recognizing $\sqrt{x^{3}+x}$ is a common factor (seen anywhere, may be seen in part (c)) (M1)
eg $\left(-3 x^{2}-1\right) \sqrt{x^{3}+x}, \int 6-\left(3 x^{2}+1\right) \sqrt{x^{3}+x},\left(3 x^{2}-1\right) \sqrt{x^{3}+x}$
correct integration (A1)(A1)
eg $\quad 6 x-\frac{2}{3}\left(x^{3}+x\right)^{\frac{3}{2}}$
Note: Award $\boldsymbol{A 1}$ for $6 x$ and award $\boldsymbol{A 1}$ for $-\frac{2}{3}\left(x^{3}+x\right)^{\frac{3}{2}}$.
substituting limits into their integrated function and subtracting (in any order) (M1)
eg $6-\frac{2}{3}\left(1^{3}+1\right)^{\frac{3}{2}}, 0-\left[6-\frac{2}{3}\left(1^{3}+1\right)^{\frac{3}{2}}\right]$
correct working
(A1)
eg $6-\frac{2}{3} \times 2 \sqrt{2}, 6-\frac{2}{3} \times \sqrt{4} \times \sqrt{2}$
area of $R=6-\frac{4 \sqrt{2}}{3}\left(=6-\frac{2}{3} \sqrt{8}, 6-\frac{2}{3} \times 2^{\frac{3}{2}}, \frac{18-4 \sqrt{2}}{3}\right)$
A1 N3
[6 marks]
2.

## Markscheme

METHOD 1 (limits in terms of $x$ )
valid approach to find $x$-intercept
eg $f(x)=0, \frac{6-2 x}{\sqrt{16+6 x-x^{2}}}=0,6-2 x=0$
$x$-intercept is $3 \quad$ (A1)
valid approach using substitution or inspection (M1)
eg $u=16+6 x-x^{2}, \int_{0}^{3} \frac{6-2 x}{\sqrt{u}} \mathrm{~d} x, \mathrm{~d} u=6-2 x, \int \frac{1}{\sqrt{u}}, 2 u^{\frac{1}{2}}$,
$u=\sqrt{16+6 x-x^{2}}, \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}=(6-2 x) \frac{1}{2}\left(16+6 x-x^{2}\right)^{-\frac{1}{2}}, \int 2 \mathrm{~d} u, 2 u$
$\int f(x) \mathrm{d} x=2 \sqrt{16+6 x-x^{2}} \quad$ (A2)
substituting both of their limits into their integrated function and subtracting (M1)
eg $2 \sqrt{16+6(3)-3^{2}}-2 \sqrt{16+6(0)^{2}-0^{2}}, 2 \sqrt{16+18-9}-2 \sqrt{16}$
Note: Award MO if they substitute into original or differentiated function. Do not accept only "- 0 " as evidence of substituting lower limit.
correct working (A1)
eg $2 \sqrt{25}-2 \sqrt{16}, 10-8$
area $=2 \quad$ A1 N2

METHOD 2 (limits in terms of $u$ )
valid approach to find $x$-intercept (M1)
eg $f(x)=0, \frac{6-2 x}{\sqrt{16+6 x-x^{2}}}=0,6-2 x=0$
$x$-intercept is 3 (A1)
valid approach using substitution or inspection
eg $u=16+6 x-x^{2}, \int_{0}^{3} \frac{6-2 x}{\sqrt{u}} \mathrm{~d} x, \mathrm{~d} u=6-2 x, \int \frac{1}{\sqrt{u}}$,
$u=\sqrt{16+6 x-x^{2}}, \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}=(6-2 x) \frac{1}{2}\left(16+6 x-x^{2}\right)^{-\frac{1}{2}}, \int 2 \mathrm{~d} u$
correct integration (A2)
eg $\int \frac{1}{\sqrt{u}} \mathrm{~d} u=2 u^{\frac{1}{2}}, \int 2 \mathrm{~d} u=2 u$
both correct limits for $u$ (A1)
eg $u=16$ and $u=25, \int_{16}^{25} \frac{1}{\sqrt{u}} \mathrm{~d} u,\left[2 u^{\frac{1}{2}}\right]_{16}^{25}, u=4$ and $u=5, \int_{4}^{5} 2 \mathrm{~d} u$, $[2 u]_{4}^{5}$
substituting both of their limits for $u$ (do not accept 0 and 3) into their
integrated function and subtracting (M1)
eg $2 \sqrt{25}-2 \sqrt{16}, 10-8$
Note: Award MO if they substitute into original or differentiated function, or if they have not attempted to find limits for $u$.
area $=2 \quad$ A1 N2

## [8 marks]

$3 a$.

## Markscheme

correct working (A1)
eg $\int \frac{1}{2 x-1} \mathrm{~d} x, \int(2 x-1)^{-1}, \frac{1}{2 x-1}, \int\left(\frac{1}{\sqrt{u}}\right)^{2} \frac{\mathrm{~d} u}{2}$
$\int(f(x))^{2} \mathrm{~d} x=\frac{1}{2} \ln (2 x-1)+c \quad$ A2 N3
Note: Award $\boldsymbol{A 1}$ for $\frac{1}{2} \ln (2 x-1)$.
[3 marks]

3b.

## Markscheme

attempt to substitute either limits or the function into formula involving $f^{2}$ (accept absence of $\pi / \mathrm{d} x$ ) (M1)
eg $\int_{1}^{9} y^{2} \mathrm{~d} x, \pi \int\left(\frac{1}{\sqrt{2 x-1}}\right)^{2} \mathrm{~d} x,\left[\frac{1}{2} \ln (2 x-1)\right]_{1}^{9}$
substituting limits into their integral and subtracting (in any order)
(M1)
eg $\frac{\pi}{2}(\ln (17)-\ln (1)), \pi\left(0-\frac{1}{2} \ln (2 \times 9-1)\right)$
correct working involving calculating a log value or using log law
(A1)
eg $\ln (1)=0, \ln \left(\frac{17}{1}\right)$
$\frac{\pi}{2} \ln 17 \quad(\operatorname{accept} \pi \ln \sqrt{17}) \quad$ A1 N3
Note: Full FT may be awarded as normal, from their incorrect answer in part (a), however, do not award the final two $\boldsymbol{A}$ marks unless they involve logarithms.
[4 marks]
4.

## Markscheme

recognizing the need to find $h^{\prime}$

## (M1)

recognizing the need to find $h^{\prime}(3)$ (seen anywhere)
(M1)
evidence of choosing chain rule (M1)
$e g \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, f^{\prime}(g(3)) \times g^{\prime}(3), f^{\prime}(g) \times g^{\prime}$
correct working (A1)
eg $f^{\prime}(7) \times 4,-5 \times 4$
$h^{\prime}(3)=-20 \quad$ (A1)
evidence of taking their negative reciprocal for normal
(M1)
eg $-\frac{1}{h^{\prime}(3)}, m_{1} m_{2}=-1$
gradient of normal is $\frac{1}{20}$
A1 N4

## [7 marks]

$5 a$.

## Markscheme

evidence of integration (M1)
eg $\int f^{\prime}(x)$
correct integration (accept absence of $C$ (A1)(A1)
eg $x^{3}+\frac{18}{2} x^{2}+C, x^{3}+9 x^{2}$
attempt to substitute $x=-1$ into their $f=0$ (must have $C$ ) M1
eg $(-1)^{3}+9(-1)^{2}+C=0,-1+9+C=0$
Note: Award MO if they substitute into original or differentiated function.
correct working (A1)
eg $8+C=0, C=-8$
$f(x)=x^{3}+9 x^{2}-8 \quad$ A1 N5
[6 marks]

5b.

## Markscheme

METHOD 1 (using $2^{\text {nd }}$ derivative)
recognizing that $f^{\prime \prime}=0$ (seen anywhere) M1
correct expression for $f^{\prime \prime}$ (A1)
eg $6 x+18,6 p+18$
correct working (A1)
$6 p+18=0$
$p=-3 \quad$ A1 N3

METHOD 1 (using $1^{\text {st }}$ derivative)
recognizing the vertex of $f^{\prime}$ is needed
eg $-\frac{b}{2 a}$ (must be clear this is for $f$ )
correct substitution
(A1)
eg $\frac{-18}{2 \times 3}$
$p=-3 \quad$ A1 N3

## [4 marks]

5c.

## Markscheme

valid attempt to use $f^{\prime \prime}(x)$ to determine concavity (M1)
eg $f^{\prime \prime}(x)<0, f^{\prime \prime}(-2), f^{\prime \prime}(-4), 6 x+18 \leq 0 \underset{-3}{+\quad-\quad f^{\prime}}$
correct working (A1)
eg $6 x+18<0, f^{\prime \prime}(-2)=6, f^{\prime \prime}(-4)=-6 \frac{-\quad+}{-3} f^{\prime \prime}$
$f$ concave down for $x<-3$ (do not accept $x \leq-3$ ) A1 N2
[3 marks]
$6 a$.

## Markscheme

attempt to find $f^{\prime}(8) \quad$ (M1)
eg $f^{\prime}(x), y^{\prime},-16 x^{-2}$
-0.25 (exact) A1 N2
[2 marks]

6 b.

## Markscheme

$\boldsymbol{u}=\binom{4}{-1}$ or any scalar multiple A2 N2
[2 marks]
$6 c$.

## Markscheme

correct scalar product and magnitudes
(A1)(A1)(A1)
scalar product $=1 \times 4+1 \times-1 \quad(=3)$
magnitudes $=\sqrt{1^{2}+1^{2}}, \sqrt{4^{2}+(-1)^{2}}(=\sqrt{2}, \sqrt{17})$
substitution of their values into correct formula
(M1)
eg $\frac{4-1}{\sqrt{1^{2}+1^{2}} \sqrt{4^{2}+(-1)^{2}}}, \frac{-3}{\sqrt{2} \sqrt{17}}, 2.1112,120.96^{\circ}$
1.03037, 59.0362 ${ }^{\circ}$
angle $=1.03,59.0^{\circ} \quad$ A1 N4
[5 marks]

6d.

## Markscheme

attempt to form composite $(f \circ f)(x) \quad$ (M1)
eg $f(f(x)), f\left(\frac{16}{x}\right), \frac{16}{f(x)}$
correct working (A1)
eg $\frac{16}{\frac{16}{x}}, 16 \times \frac{x}{16}$
$(f \circ f)(x)=x$
A1 N2

## [3 marks]

$6 e$.

## Markscheme

$f^{-1}(x)=\frac{16}{x}$ (accept $y=\frac{16}{x}, \frac{16}{x}$ ) A1 N1
Note: Award $\boldsymbol{A O}$ in part (ii) if part (i) is incorrect.
Award $\boldsymbol{A} \boldsymbol{O}$ in part (ii) if the candidate has found $f^{-1}(x)=\frac{16}{x}$ by interchanging $x$ and $y$.

## Markscheme

## METHOD 1

recognition of symmetry about $y=x \quad$ (M1)
eg $(2,8) \Leftrightarrow(8,2)$


evidence of doubling their angle (M1)
eg $2 \times 1.03,2 \times 59.0$
$2.06075,118.072^{\circ}$
2.06 (radians) (118 degrees) A1 N2

## METHOD 2

finding direction vector for tangent line at $x=2 \quad$ (A1)
$e g\binom{-1}{4},\binom{1}{-4}$
substitution of their values into correct formula (must be from vectors)
eg $\frac{-4-4}{\sqrt{1^{2}+4^{2}} \sqrt{4^{2}+(-1)^{2}}}, \frac{8}{\sqrt{17} \sqrt{17}}$
$2.06075,118.072^{\circ}$
2.06 (radians) (118 degrees) A1 N2

## METHOD 3

using trigonometry to find an angle with the horizontal
eg $\tan \theta=-\frac{1}{4}, \tan \theta=-4$
finding both angles of rotation
(A1)
eg $\theta_{1}=0.244978,14.0362^{\circ}, \theta_{1}=1.81577,104.036^{\circ}$
$2.06075,118.072^{\circ}$
2.06 (radians) (118 degrees) A1 N2
[3 marks]
$7 a$.
Markscheme
valid approach (M1)
eg $f(x)=0, \quad 4-2 \mathrm{e}^{x}=0$
0.693147
$x=\ln 2$ (exact), $0.693 \quad$ A1 N2
[2 marks]

7b.

## Markscheme

attempt to substitute either their correct limits or the function into formula (M1)
involving $f^{2}$
eg $\int_{0}^{0.693} f^{2}, \pi \int\left(4-2 \mathrm{e}^{x}\right)^{2} \mathrm{~d} x, \int_{0}^{\ln 2}\left(4-2 \mathrm{e}^{x}\right)^{2}$
3.42545
volume $=3.43 \quad$ A2 N3
[3 marks]

8a.

## Markscheme

valid approach (M1)
eg $s_{\mathrm{A}}(0), s(0), t=0$
$15(\mathrm{~cm})$ A1 N2
[2 marks]

8b.
Markscheme
valid approach (M1)
$e g s_{\mathrm{A}}=0, s=0,6.79321,14.8651$
2.46941
$t=2.47$ (seconds) A1 N2
[2 marks]
$8 c$.

## Markscheme

recognizing when change in direction occurs (M1)
$e g$ slope of $s$ changes sign, $s^{\prime}=0$, minimum point, 10.0144, (4.08, -4.66)
4.07702
$t=4.08$ (seconds) A1 N2
[2 marks]

## Markscheme

## METHOD 1 (using displacement)

correct displacement or distance from P at $t=3$ (seen anywhere) (A1)
eg -2.69630, 2.69630
valid approach (M1)
eg $15+2.69630, s(3)-s(0),-17.6963$
17.6963
17.7 (cm) A1 N2

## METHOD 2 (using velocity)

attempt to substitute either limits or the velocity function into
distance formula involving $|v|$ (M1)
$e g \int_{0}^{3}|v| \mathrm{d} t, \quad \int\left|-1-18 t^{2} \mathrm{e}^{-0.8 t}+4.8 t^{3} \mathrm{e}^{-0.8 t}\right|$
17.6963
17.7 (cm) A1 N2
[3 marks]

8 e.

## Markscheme

recognize the need to integrate velocity (M1)
eg $\int v(t)$
$8 t-\frac{2 t^{2}}{2}+c$ (accept $x$ instead of $t$ and missing $c$ )
(A2)
substituting initial condition into their integrated expression (must have $c$ )
(M1)
eg $15=8(0)-\frac{2(0)^{2}}{2}+c, \quad c=15$
$s_{\mathrm{B}}(t)=8 t-t^{2}+15 \quad$ A1 $\mathbf{N 3}$
[5 marks]
$8 f$.

## Markscheme

valid approach (M1)
eg $s_{\mathrm{A}}=s_{\mathrm{B}}$, sketch, (9.30404, 2.86710)
9.30404
$t=9.30$ (seconds) A1 N2
Note: If candidates obtain $s_{\mathrm{B}}(t)=8 t-t^{2}$ in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last $\boldsymbol{A 1}$ in part (e)(ii) only if both solutions are given.

## [2 marks]

Printed for North Atlanta High School

