AP CALCULUS

Stuff you MUST Know Cold

Curve sketching and analysis

$y=f(x)$ must be continuous at each: critical point: $\frac{d y}{d x}=0$ or undefined. local minimum :
$\frac{d y}{d x}$ goes $(-, 0,+)$ or $(-$, und,+$)$
or $\frac{d^{2} y}{d x^{2}}>0$.
local maximum :
$\frac{d y}{d x}$ goes $(+, 0,-)$ or $(+$, und,--)
or $\frac{d^{2} y}{d x^{2}}<0$.
pt of inflection : concavity changes.
$\frac{d^{2} y}{d x^{2}}$ goes $(+, 0,-),(-, 0,+)$,
$(+$, und, -$)$, or (-,und,+)

$$
\begin{aligned}
& \text { Basic Derivatives } \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
& \frac{d}{d x}(\sec x)=\sec x \tan x \\
& \frac{d}{d x}(\csc x)=-\csc x \cot x \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \hline
\end{aligned}
$$

More Derivatives

$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}$
$\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$
$\frac{d}{d x}\left(\csc ^{-1} x\right)=\frac{-1}{|x| \sqrt{x^{2}-1}}$
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
$\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$

Differentiation Rules

Chain Rule
$\frac{d}{d x}[f(u)]=f^{\prime}(u) \frac{d u}{d x}$
$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
Product Rule
$\frac{d}{d x}(u v)=u \frac{d v}{d x}+\frac{d u}{d x} v$
Quotient Rule
$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\frac{d u}{d x} v-u \frac{d v}{d x}}{v^{2}}$

"PLUS A CONSTANT"

The Fundamental Theorem of Calculus

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F^{\prime}(x)=f(x)$.

$$
\begin{gathered}
\text { Corollary to FTC } \\
\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t= \\
\quad f(b(x)) b^{\prime}(x)-f(a(x)) a^{\prime}(x)
\end{gathered}
$$

Intermediate Value Theorem

If the function $f(x)$ is continuous on $[a, b]$, then for any number c between $f(a)$ and $f(b)$, there exists a number d in the open interval (a, b) such that $f(d)=c$.

Rolle's Theorem

If the function $f(x)$ is continuous on $[a, b]$, the first derivative exist on the interval (a, b), and $f(a)=f(b)$; then there exists a number $x=c$ on (a, b) such that

$$
f^{\prime}(c)=0
$$

Mean Value Theorem

If the function $f(x)$ is continuous on $[a, b]$, and the first derivative exists on the interval (a, b), then there exists a number $x=c$ on (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem of the Mean Value
If the function $f(x)$ is continuous on $[a, b]$ and the first derivative exist on the interval (a, b), then there exists a number $x=c$ on (a, b) such that

$$
f(c)=\frac{\int_{a}^{b} f(x) d x}{(b-a)}
$$

This value $f(c)$ is the "average value" of the function on the interval $[a, b]$.

Trapezoidal Rule

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \frac{b-a}{2 n}\left[f\left(x_{0}\right)\right. \\
& +2 f\left(x_{1}\right)+\cdots \\
& \left.+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Solids of Revolution and friends

Disk Method

$$
V=\pi \int_{a}^{b}[R(x)]^{2} d x
$$

Washer Method

$$
V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x
$$

Shell Method(no longer on AP)

$$
V=2 \pi \int_{a}^{b} r(x) h(x) d x
$$

ArcLength

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Surface of revolution (No longer on AP)

$$
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Distance, velocity and acceleration

velocity $=\frac{d}{d t}$ (position).
acceleration $=\frac{d}{d t}$ (velocity).
velocity vector $=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$.
speed $=|v|=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}$.

$$
\begin{aligned}
\text { Distance } & =\int_{\text {initial time }}^{\text {final time }}|v| d t \\
& =\int_{t_{0}}^{t_{f}} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t
\end{aligned}
$$

average velocity $=$
final position - initial position total time

$$
\begin{aligned}
& \text { Integration by Parts } \\
& \int u d v=u v-\int v d u
\end{aligned}
$$

Integral of Log

$$
\int \ln x d x=x \ln x-x+\mathrm{C}
$$

Taylor Series

If the function f is "smooth" at $x=$ a, then it can be approximated by the $n^{\text {th }}$ degree polynomial

$$
\begin{aligned}
f(x) \approx f(a) & +f^{\prime}(a)(x-a) \\
& +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Maclaurin Series

A Taylor Series about $x=0$ is called Maclaurin.

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots
$$

$$
\cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots
$$

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

$$
\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Lagrange Error Bound

If $P_{n}(x)$ is the $n_{\text {th }}$ degree Taylor polynomial of $f(x)$ about c and $\left|f^{(n+1)}(t)\right| \leq M$ for all t between x and c, then

$$
\left|f(x)-P_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-c|^{n+1}
$$

Alternating Series Error Bound

 If $S_{N}=\sum_{k=1}^{N}(-1)^{n} a_{n}$ is the $\mathrm{N}^{\text {th }}$ partial sum of a convergent alternating series, then$$
\left|S_{\infty}-S_{N}\right| \leq\left|a_{N+1}\right|
$$

Euler's Method

If given that $\frac{d y}{d x}=f(x, y)$ and that the solution passes through $\left(x_{0}, y_{0}\right)$,
$y\left(x_{0}\right)=y_{0}$

$$
y\left(x_{n}\right)=y\left(x_{n-1}\right)+f\left(x_{n-1}, y_{n-1}\right) \cdot \Delta x
$$

In other words:

$$
\begin{gathered}
x_{\text {new }}=x_{\text {old }}+\Delta x \\
y_{\text {new }}=y_{\text {old }}+\left.\frac{d y}{d x}\right|_{\left(x_{\text {old }}, y_{\text {old }}\right)} \cdot \Delta x
\end{gathered}
$$

Ratio Test

The series $\sum_{k=0}^{\infty} a_{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|<1
$$

If limit equals 1 , you know nothing.

Polar Curves

For a polar curve $r(\theta)$, the Area inside a "leaf" is

$$
\int_{\theta 1}^{\theta 2} \frac{1}{2}[r(\theta)]^{2} d \theta
$$

where $\theta 1$ and $\theta 2$ are the "first" two times that $r=0$.
The slope of $r(\theta)$ at a given θ is

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{\frac{d}{d \theta}[r(\theta) \sin \theta]}{\frac{d}{d \theta}[r(\theta) \cos \theta]}
\end{aligned}
$$

l'Hopital's Rule

If $\frac{f(a)}{g(a)}=\frac{0}{0}$ or $=\frac{\infty}{\infty}$,
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

