Final Exam Old stuff Practice Review

1. Let R be the region between the graph of $y=e^{-2 x}$ and the x-axis for $x \geq 3$. The area of R is

$$
\text { (A) } \frac{1}{2 e^{6}}
$$

(B) $\frac{1}{e^{6}}$
(C) $\frac{2}{e^{6}}$
(D) $\frac{\pi}{2 e^{6}}$
(E) infinite
2. The length of a curve from $x=1$ to $x=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve?
(A) $y=3+3 x^{2}$
(B) $y=5+x^{3}$
(C) $y=6+x^{3}$
(D) $y=6-x^{3}$
(E) $y=\frac{16}{5}+x+\frac{9}{5} x^{5}$
3. Which of the following integrals gives the length of the curve $y=\ln x$ from $x=1$ to $x=2$?

Final Exam Old stuff Practice Review

(A) $\int_{1}^{2} \sqrt{1+\frac{1}{x^{2}}} d x$
(B) $\int_{1}^{2}\left(1+\frac{1}{x^{2}}\right) d x$
(C) $\int_{1}^{2} \sqrt{1+e^{2 x}} d x$
(D) $\int_{1}^{2} \sqrt{1+(\ln x)^{2}} d x$
(E) $\int_{1}^{2}\left(1+(\ln x)^{2}\right) d x$
4.

x	1	3	5	7
$f(x)$	4	6	7	5
$f^{\prime}(x)$	2	1	0	-1

The table above gives selected values for a differentiable function f and its first derivative. Using a left Riemann sum with 3 subintervals of equal length, which of the following is an approximation of the length of the graph of f on the interval $[1,7]$?
(A) 6
(B) 34
(C) $2 \sqrt{3}+2 \sqrt{2}+2$
(D) $2 \sqrt{5}+2 \sqrt{2}+2$
(E) $2 \sqrt{5}+4 \sqrt{2}+2$

Final Exam Old stuff Practice Review

5.

\mathbf{x}	$f(x)$	$f^{\prime}(x)$
0	2	5
4	-3	11

The function f has a continuous derivative. The table above gives values of f and its derivative for $x=0$ and $x=4$. If $\int_{0}^{4} f(x) d x=8$, what is the value of $\int_{0}^{4} x f^{\prime}(x) d x$?
(A) -20
(B) -13
(C) -12
(D) -7
(E) 36
6. $\int \frac{7 x}{(2 x-3)(x+2)} d x=$
(A) $\frac{3}{2} \ln |2 x-3|+2 \ln |x+2|+C$
(B) $3 \ln |2 x-3|+2 \ln |x+2|+C$
(C) $3 \ln |2 x-3|-2 \ln |x+2|+C$
(D) $-\frac{6}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
(E) $-\frac{3}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
7. $\int \frac{1}{x^{2}-7 x+10} d x=$
(A) $\ln |(x-2)(x-5)|+C$
(B) $\frac{1}{3} \ln |(x-2)(x-5)|+C$
(C) $\frac{1}{3} \ln \left|\frac{2 x-7}{(x-2)(x-5)}\right|+C$
(D) $\frac{1}{3} \ln \left|\frac{x-2}{x-5}\right|+C$
(E) $\frac{1}{3} \ln \left|\frac{x-5}{x-2}\right|+C$
8. For $0<P<100$, which of the following is an antiderivative of $\frac{1}{100 P-P^{2}}$?
(A) $\frac{1}{100} \ln (P)-\frac{1}{100} \ln (100-P)$
(B) $\frac{1}{100} \ln (P)+\frac{1}{100} \ln (100-P)$
(C) $100 \ln (P)-100 \ln (100-P)$
(D) $\ln \left(100 P-P^{2}\right)$
(E) $\frac{1}{50 P^{2}-\frac{p^{3}}{3}}$
9. $\int \frac{8}{x^{2}-4} d x=$
(A) $4 \tan ^{-1}\left(\frac{x}{2}\right)+c$
(B) $8 \ln \left|x^{2}-4\right|+c$
(C) $2 \ln \left|\frac{x-2}{x+2}\right|+c$
(D) $2 \ln \left|\frac{x+2}{x-2}\right|+c$
(E) $2 \ln |x+2|+2 \ln |x-2|+c$
10. $\int \frac{1+3 x}{(1-x)(3 x-5)} d x=$

Final Exam Old stuff Practice Review

(A) $2 \ln |1-x|-3 \ln |3 x-5|+C$
(B) $2 \ln |1-x|-27 \ln |3 x-5|+C$
(C) $-2 \ln |1-x|-3 \ln |3 x-5|+C$
(D) $-2 \ln |1-x|-9 \ln |3 x-5|+C$
11. Given that $y(1)=-3$ and $\frac{d y}{d x}=2 x+y$, what is the approximation for $y(2)$ if Euler's method is used with a step size of 0.5 , starting at $x=1$?
(A) -5
(B) -4.25
(C) -4
(D) -3.75
(E) -3.5
12. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=x+y$ with the initial condition $f(1)=2$. What is the approximation for $f(2)$ if Euler's method is used, starting at $x=1$ with a step size of 0.5 ?

Final Exam Old stuff Practice Review

(A) 3
(B) 5
(C) 6
(D) 10
(E) 12
13.

x	2	2.2	2.4
$f^{\prime}(x)$	-0.5	-0.3	-0.1

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be the solution to the differential equation $\frac{d y}{d x}=f^{\prime}(x)$ with initial condition $\mathrm{f}(2)=3$. Selected values of f ' are given in the table above. What is the approximation for $f(2.4)$ if Euler's method is used, starting at $x=2$ with two steps of equal size?
(A) 2.80
(B) 2.82
(C) 2.84
(D) 2.92
(E) 3.16

Final Exam Old stuff Practice Review

14. The number of moose in a national park is modeled by the function M that satisfies the logistic differential equation $\frac{d M}{d t}=0.6 M\left(1-\frac{M}{200}\right)$, where t is the time in years and $M(0)=50$. What is $\lim _{t \rightarrow \infty} M(t)$?
(A) 50
(B) 200
(C) 500
(D) 1000
(E) 2000
15. The number of students in a cafeteria is modeled by the function P that satisfies the logistic differential equation $\frac{d P}{d t}=\frac{1}{2000} P(200-P)$, where t is the time in seconds and $P(0)=25$. What is the greatest rate of change, in students per second, of the number of students in the cafeteria?
(A) 5
(B) 25
(C) 100
(D) 200

Final Exam Old stuff Practice Review

16. A population of wolves is modeled by the function P and grows according to the logistic differential equation $\frac{d P}{d t}=5 P\left(1-\frac{P}{5000}\right)$, where t is the time in years and $P(0)=1000$. Which of the following statements are true?
17.

$\lim _{t \rightarrow \infty} P(t)=5000$
2.
$\frac{d P}{d t}$ is, positive, for,$t>0$.
3.
$\frac{d^{2} P}{d t^{2}}$ is, positive, for,$t>0$.
(A) I only
(B) II only
(C) I and II only

D I and III only
(E) I, II, and III
17. The function N satisfies the logistic differential equation $\frac{d N}{d t}=\frac{N}{10}\left(1-\frac{N}{850}\right)$, where $\mathrm{N}(0)=$ 105. Which of the following statements is false?
(A) $\lim _{x \rightarrow \infty} N(t)=850$

B $\frac{d N}{d t}$ has a maximum value when $\mathrm{N}=105$
(C) $\frac{d^{2} N}{d t^{2}}=0$ when $\mathrm{N}=425$
(D) When $\mathrm{N}>425, \frac{d N}{d t}>0$ and $\frac{d^{2} N}{d t^{2}}<0$

Final Exam Old stuff Practice Review

18. Which of the following graphs is the solution to the logistic differential equation $\frac{d y}{d t}=\frac{y}{5}\left(1-\frac{y}{500}\right)$ with the initial condition $y(0)=100$?

Final Exam Old stuff Practice Review

19. Let k be a positive constant. Which of the following is a logistic differential equation?

Final Exam Old stuff Practice Review

(A) $\frac{d y}{d t}=k t$
(B) $\frac{d y}{d t}=k y$
(C) $\frac{d y}{d t}=k t(1-t)$
(D) $\frac{d y}{d t}=k y(1-t)$
(E) $\frac{d y}{d t}=k y(1-y)$
20.

$f(x)=\left\{\begin{array}{cl}6-\frac{3}{4} x & \text { for } 0 \leq x<4 \\ 1+\frac{1}{8}(x-8)^{2} & \text { for } 4 \leq x \leq 12 \quad \text { A skateboard track consists of a straight ramp followed } \\ 3 & \text { for } 12<x \leq 14\end{array}\right.$
by a curved section and a horizontal ledge. The track is modeled by the piecewise-defined function f above, and the graph of f is shown in the figure above. Which of the following expressions gives the total length of the track from $x=0$ to $x=14$?

Final Exam Old stuff Practice Review

(A) $2+\int_{0}^{12} \sqrt{1+\left(-\frac{3}{4}+\frac{1}{4}(x-8)\right)^{2}} d x x$
(B) $2+\int_{0}^{12}\left(\sqrt{1+\left(-\frac{3}{4}\right)^{2}}+\sqrt{1+\frac{1}{16}(x-8)^{2}}\right) d x$
(C) $7+\int_{4}^{12} \sqrt{1+\left(1+\frac{1}{8}(x-8)^{2}\right)^{2}} d x$
(D) $7+\int_{4}^{12} \sqrt{1+\frac{1}{16}(x-8)^{2}} d x$
21. The rate of change, $\frac{d P}{d t}$, of the number of people entering a movie theater is modeled by a logistic differential equation. The capacity of the theater is 500 people. At a certain time, the number of people in the theater is 100 and is increasing at the rate of 50 per minute. Which of the following differential equations could describe this situation?
(A) $\frac{d P}{d t}=\frac{1}{8}(500-P)$
(B) $\frac{d P}{d t}=\frac{1}{50} P(500-P)$
(C) $\frac{d P}{d t}=\frac{1}{800} P(500-P)$
(D) $\frac{d P}{d t}=\frac{1}{1200} P(500+P)$
22. If $\int_{1}^{x} f(t) d t=\frac{20 x}{\sqrt{4 x^{2}+21}}-4$, then $\int_{1}^{\infty} f(t) d t$ is
(A) 6
(B) 1
(c) -3
(D) -4
(E) divergent
23. $\int_{1}^{\infty} \frac{x^{2}}{\left(x^{3}+2\right)^{2}} d x$ is
(A) $-\frac{1}{9}$
(B) $\frac{1}{9}$
(C) $\frac{1}{3}$
(D) 1
(E) divergent
24. $\int_{1}^{\infty} x e^{-x^{2}} d x$ is
(A) $-\frac{1}{e}$
(B) $\frac{1}{2 e}$
(C) $\frac{1}{e}$
(D) $\frac{2}{e}$
(E) divergent
25. $\int_{0}^{3} \frac{d x}{(1-x)^{2}}$
(A) $-\frac{3}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{3}{2}$
(E) divergent
26. $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ and $\int_{0}^{1} \frac{1}{x^{p}} d x$ both diverge when $p=$

Final Exam Old stuff Practice Review

(A) 2
(B) 1
(C) $\frac{1}{2}$
(D) 0
(E) -1
27. Which of the following statements about the integral $\int_{0}^{\pi} \sec ^{2} x d x$ is true
(A) The integral is equal to 0 .
(B) The integral is equal to $2 / 3$.
(C) The integral diverges because $\lim _{x \rightarrow \frac{\pi}{2}} \sec ^{2} x$ does not exist.
(D) The integral diverges because $\lim _{x \rightarrow \frac{\pi}{2}} \tan x$ does not exist.
28. What are all values of p for which $\int_{1}^{\infty} \frac{1}{x^{3 p+1}} d x$ converges?
(A) $p<0$
(B) $p>-1 / 3$
(C) $p>0$
(D) $p>1$
29. Which of the following are equivalent to $\int_{2}^{4} \frac{2 x+5}{5-x} d x$?

1. $\frac{\int_{2}^{4}(2 x+5) d x}{\int_{2}^{4}(5-x) d x}$
2. $\int_{2}^{4}\left(-2+\frac{15}{5-x}\right) d x$
3. $\int_{1}^{3}\left(\frac{15}{u}-2\right) d u$
(A) I only
(B) II only
(C) III only

D II and III only
30. Which of the following is equivalent to $\int \frac{1}{x^{2}-16} d x$?

Final Exam Old stuff Practice Review

(A) $\int \frac{1}{u} d u$, where $u=x^{2}-16$
(B) $\frac{1}{2 x} \int \frac{1}{u} d / u$, where $u=x^{2}-16$
(C) $\frac{1}{8} \int \frac{1}{x-4} d x-\frac{1}{8} \int \frac{1}{x+4} d x$
(D) $\int \frac{1}{x-4} d x+\int \frac{1}{x+4} d x$
31. Which of the following is equivalent to $\int_{3}^{5} x \ln x \bowtie d x$?
(A) $\int_{\ln 3}^{\ln 5} u \bowtie / u$
(B) $\int_{3}^{5} x d x \cdot \int_{3}^{5} \ln x d x$
(C) $\left.\frac{1}{2} x^{2} \ln x\right|_{3} ^{5}-\int_{3}^{5} \frac{1}{2} x d x$
(D) $\left.\frac{1}{2} x^{2} \ln x\right|_{3} ^{5}+\int_{3}^{5} \frac{1}{2} x d x$
32. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=y-10 x^{2}$ with the initial condition $f(0)=3$. What is the approximation for $f(0.4)$ if Euler's method is used, starting at $x=0$ with steps of size 0.2 ?

Final Exam Old stuff Practice Review

(A) 4.120
(B) 4.200
(C) 4.240
(D) 4.768
33. $\int_{0}^{4} \frac{1}{\sqrt{x}(1+\sqrt{x})} d x$ is
(A) $\ln 3$
(B) $\ln 5$
(C) $2 \ln 3$
(D) divergent
34.

x	1	2	3	4
$f(x)$	-2	1	6	3
$f^{\prime}(x)$	2	4	-1	-4

The function f has a continuous second derivative. The table above gives values of f and its derivative, f^{\prime}, at selected values of x. What is the value of $\int_{1}^{2} x f^{\prime \prime}(x) d x$?
(A) 3
(B) 4
(C) 7
(D) 9
35. Which of the following expressions is equal to $\int_{0}^{2} \frac{17 x+4}{3 x^{2}-7 x-6} d x$?
(A) $\int_{0}^{2} \frac{2}{x-3} d x+\int_{0}^{2} \frac{5}{3 x+2} d x$
(B) $\int_{0}^{2} \frac{5}{x-3} d x+\int_{0}^{2} \frac{2}{3 x+2} d x$
(C) $\int_{0}^{2} \frac{4}{x-3} d x+\int_{0}^{2} \frac{17 x}{3 x+2} d x$
(D) $\int_{0}^{2} \frac{17 x}{x-3} d x+\int_{0}^{2} \frac{4}{3 x+2} d x$

