Integrals 1 Test Review

1. What is the average value of y for the part of the curve $y=3 x-x^{2}$, which is the first quadrant?
(A) -6
(B) -2
(C) $\frac{3}{2}$
(D) $\frac{9}{4}$
(E) $\frac{9}{2}$
2. If the function f given by $f(x)=x^{3}$ has an average value of 9 on the closed interval $[0, k]$, then $k=$
(A) 3
(B) $3^{\frac{1}{2}}$
(C) $18^{\frac{1}{3}}$
(D) $36^{\frac{1}{4}}$
(E) $36^{\frac{1}{3}}$
3. The average (mean) value of \sqrt{x} over the interval $0 \leq x \leq 2$ is

Integrals 1 Test Review

(A) $\frac{1}{3} \sqrt{2}$
(B) $\frac{1}{2} \sqrt{2}$
(C) $\frac{2}{3} \sqrt{2}$
(D) 1
(E) $\frac{4}{3} \sqrt{2}$
4. The average value of $1 / x$ on the closed interval $[1,3]$ is
(A) 12
(B) 23
(C) $\ln 2 / 2$
(D) $\ln 3 / 2$
(E) $\ln 3$
5. $\frac{d}{d x}\left(\int_{0}^{x^{3}} \ln \left(t^{2}+1\right) d t\right)=$

Integrals 1 Test Review

(A) $\frac{2 x^{3}}{x^{6}+1}$
(B) $\frac{3 x^{2}}{x^{6}+1}$
(C) $\ln \left(x^{6}+1\right)$
(D) $2 x^{3} \ln \left(x^{6}+1\right)$
(E) $3 x^{2} \ln \left(x^{6}+1\right)$
6. For all $x>1$, if $f(x)=\int_{t}^{x} \frac{1}{t} d t$, then $f(x)=$
(A) 1
(B) $\frac{1}{x}$
(C) $\ln x-1$
(D) $\ln x$
(E) e^{x}
7. Let g be a function with first derivative given by $g^{\prime}(x)=\int_{0}^{x} e^{-t^{2}} d t$. Which of the following must be true on the interval $0<x<2$?

Integrals 1 Test Review

(A) g is increasing, and the graph of g is concave up.
(B) g is increasing, and the graph of g is concave down.
(C) g is decreasing, and the graph of g is concave up.

D g is decreasing, and the graph of g is concave down.
(E) g is decreasing, and the graph of g has a point of inflection on $0<x<2$.
8. $\frac{d}{d x}\left(\int_{0}^{x^{2}} \sin \left(t^{3}\right) d t\right)=$
(A) $-\cos \left(x^{6}\right)$
(B) $\sin \left(x^{3}\right)$
(C) $\sin \left(x^{6}\right)$
(D) $2 x \sin \left(x^{3}\right)$
(E) $2 x \sin \left(x^{6}\right)$

Integrals 1 Test Review

9.

The graph of the function f shown in the figure above has horizontal tangents at $x=3$ and $x=6$. If $g(x)=\int_{0}^{2 x} f(t) d t$, what is the value of $g^{\prime}(3) ?$
(A) 0
(B) -1
(C) -2
(D) -3
(E) -6

Integrals 1 Test Review

10.

Graph of f
The graph of a differentiable function f is shown above. If $h(x)=\int_{0}^{x} f(t) d t$, which of the following is true?
(A) $h(6)<h^{\prime}(6)<h^{\prime \prime}(6)$
(B) $h(6)<h^{\prime \prime}(6)<h^{\prime}(6)$
(C) $h^{\prime}(6)<h(6)<h^{\prime \prime}(6)$
(D) $h^{\prime \prime}(6)<h(6)<h^{\prime}(6)$
(E) $h^{\prime \prime}(6)<h^{\prime}(6)<h(6)$
11.

The figure above shows the graph of f. If $f(x)=\int_{2}^{x} g(t) d t$, which of the following could be the graph of $y=g(x) ?$

Integrals 1 Test Review

Integrals 1 Test Review

12. $\int_{1}^{4}|x-3| d x=$

Integrals 1 Test Review

(A) $-\frac{3}{2}$
(B) $\frac{3}{2}$
(C) $\frac{5}{2}$
(D) $\frac{9}{2}$
(E) 5
13. If $\int_{1}^{10} f(x) d x=4$ and $\int_{10}^{3} f(x) d x=7$, then $\int_{1}^{3} f(x) d x=$
(A) -3
(B) 0
(C) 3
(D) 10
(E) 11
14. The function f is defined by $f(x)=\left\{\begin{array}{ll}2 & \text { for } x<3 \\ x-1 & \text { for } x \geq 3 .\end{array}\right.$ What is the value of $\int_{1}^{5} f(x) d x$?

Integrals 1 Test Review

(A) 2
(B) 6
(C) 8
(D) 10
(E) 12
15. Given $f(x)=\left\{\begin{array}{ll}x+1 & \text { for } x<0 \\ \cos \pi & \text { for } x \geq 0\end{array} \int_{-1}^{1} f(x) d x=\right.$
(A) $\frac{1}{2}+\frac{1}{\pi}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}-\frac{1}{\pi}$
(D) $\frac{1}{2}$
(E) $-\frac{1}{2}+\pi$
16.

If f is a linear function and $0<a<b$, then $\int_{a}^{b} f^{\prime \prime}(x) d x=$

Integrals 1 Test Review

(A) 0
(B) 1
(C) $\frac{a b}{2}$
(D) $\mathrm{b}-\mathrm{a}$
(E) $\frac{b^{2}-a^{2}}{2}$
17.

Graph of f
The graph of the piecewise linear function f is shown in the figure above. If $g(x)=\int_{-2}^{x} f(t) d t$, which of the following values is greatest?
(A) $g(-3)$
(B) $g(-2)$
(C) $g(0)$
(D) $g(1)$
(E) $g(2)$

Integrals 1 Test Review

18.

The graph of $y=f(x)$ is shown in the figure above. If A_{1} and A_{2} are positive numbers that represent the areas of the shaded regions, then in terms of A_{1} and A_{2},
$\int_{-4}^{4} f(x) d x-2 \int_{-1}^{4} f(x) d x=$
(A) A_{1}
(B) $A_{1}-A_{2}$
(C) $2 \mathrm{~A}_{1}-\mathrm{A}_{2}$
(D) $A_{1}+A_{2}$
(E) $A_{1}+2 A_{2}$
19.

The graph of a piecewise-linear function f, for $-1 \leq x \leq 4$, is shown above. What is the value of $\int_{-1}^{4} f(x) d x ?$

Integrals 1 Test Review

(A) 1
(B) 2.5
(C) 4
(D) 5.5
(E) 8
20. If $\int \mathrm{o}^{\mathrm{k}}\left(2 \mathrm{kx}-\mathrm{x}^{2}\right) \mathrm{dx}=18$, then $k=$
(A) -9
(B) -3
(C) 3
(D) 9
(E) 18
21. $\int_{0}^{1}(3 x-2)^{2} d x=$

Integrals 1 Test Review

(A) $-\frac{7}{3}$
(B) $-\frac{7}{9}$
(C) $\frac{1}{9}$
(D) 1
(E) 3
22. $\int_{0}^{\frac{\pi}{4}} \sin x d x=$
(A) $-\frac{\sqrt{2}}{2}$
(B) $\frac{\sqrt{2}}{2}$
(C) $-\frac{\sqrt{2}}{2}-1$
(D) $-\frac{\sqrt{2}}{2}+1$
(E) $\frac{\sqrt{2}}{2}-1$
23. $\int_{1}^{2} \frac{x-4}{x^{2}} d x$

Integrals 1 Test Review

(A) $-\frac{1}{2}$
(B) $\ln 2-2$
(C) $\ln 2$
(D) 2
(E) $\ln 2+2$
24. $\int_{0}^{1} \sqrt{x}(x+1) d x=$
(A) 0
(B) 1
(C) $\frac{16}{15}$
(D) $\frac{7}{5}$
(E) 2
25.

What are all values of k for which $\int_{-3}^{k} x^{2} d x=0$?

Integrals 1 Test Review

(A) -3
(B) 0
(C) 3
(D) -3 and 3
(E) $-3,0,3$
26.

The graph of f^{\prime}, the derivative of f, is the line shown in the figure above. If $f(0)=5$, then $f(1)=$
(A) 0
(B) 3
(C) 6
(D) 8
(E) 11

Integrals 1 Test Review

27. $\int \sec ^{2} x d x=$
(A) $\tan x+c$
(B) $\csc ^{2} x+c$
(C) $\cos ^{2} x+c$
(D) $\frac{\sec ^{3} x}{3}+c$
(E) $2 \sec ^{2} x \tan x+c$
28. If the second derivative of f is given by $f^{\prime \prime}(x)=2 x-\cos x$, which of the following could be $\mathrm{f}(x)$?
(A) $\frac{x^{3}}{3}+\cos x-x+1$
(B) $\frac{x^{3}}{3}-\cos x-x+1$
(C) $x^{3}+\cos x-x+1$
(D) $x^{2}-\sin x+1$
(E) $x^{2}+\sin x+1$
29. $\int_{1}^{e} \frac{x^{2}+1}{x} d x=$

Integrals 1 Test Review

(A) $\frac{e^{2}-1}{2}$
(B) $\frac{e^{2}+1}{2}$
(C) $\frac{e^{2}+2}{2}$
(D) $\frac{e^{2}-1}{e^{2}}$
(E) $\frac{2 e^{2}-8 e+6}{3 e}$
30.

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

The function f is continuous on the closed interval [2,13] and has values as shown in the table above. Using the intervals [2,3], [3,5], [5,8], and[8,13] what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from a left Riemann sum?
(A) 6
(B) 14
(C) 28
(D) 32
(E) 50

Integrals 1 Test Review

31.

t (hours)	4	7	12	15
$R(t)$ (liters/hour)	6.5	6.2	5.9	5.6

A tank contains 50 liters of oil at time $t=4$ hours. Oil is being pumped into the tank at a rate $R(t)$, where $R(t)$ is measured in liters per hour, and t is measured in hours. Selected values of $R(t)$ are given in the table above. Using a right Riemann sum with three subintervals and data from the table, what is the approximation of the number of liters of oil that are in the tank at time $t=15$ hours?
(A) 64.9
(B) 68.2
(C) 114.9
(D) 116.6
(E) 118.2
32.

x	2	5	10	14
$f(x)$	12	28	34	30

The function f is continuous on the closed interval $[2,14]$ and has values as shown in the table above. Using the subintervals [2,5], [5,10], and [10,14], what is the approximation of $\int_{2}^{14} f(x) d x$ found by using a right Riemann sum?

Integrals 1 Test Review

(A) 296
(B) 312
(C) 343
(D) 374
(E) 390
33. If the average value of a continuous function f on the interval $\left[-2,4\right.$] is 12 , what is $\int_{-2}^{4} \frac{f(x)}{8} d x$?
(A) $\frac{3}{2}$
(B) 3
(C) 9
(D) 72
34. Let f be a differentiable function such that $f(0)=-5$ and $f^{\prime}(x) \leq 3$ for all x. Of the following, which is not a possible value for $f(2)$?

Integrals 1 Test Review

(A) - -10
(B) -5
(C) 0
(D) 1
(E) 2
35. Which of the following is an equation for the line tangent to the graph of $y=3-\int_{-1}^{x} e^{-t^{3}} d t$ at the point where $x=-1$?
(A) $y-3=-3 e(x+1)$
(B) $y-3=-e(x+1)$
(C) $y-3=0$
(D) $y-3=-1 / e(x+1)$
(E) $y-3=3 e(x+1)$
36. Let g be the function defined by $g(x)=\int_{-1}^{x} \frac{t^{3}-t^{2}-6 t}{\sqrt{t^{2}+7}} d t$. On which of the following intervals is g decreasing?
(A) $x \leq-2$ and $0 \leq x \leq 3$
(B) $x \leq-2$ and $x \geq 3$
(C) $-2 \leq x \leq 0$ and $x \geq 3$
(D) $-2 \leq x \leq 3$
(E) $x \leq-1$
37.

Graph of f
The graph of the function f in the figure above consists of four line segments. Let g be the function defined by $g(x)=\int_{0}^{x} f(t) d t$. Which of the following is an equation of the line tangent to the graph of g at $x=5$?
(A) $y+1=x-5$
(B) $y-2=x-5$
(C) $y-2=-1(x-5)$
(D) $y+2=x-5$
(E) $y+2=-1(x-5)$
38.

Graph of f
The graph of f is shown above for $0 \leq x \leq 4$. What is the value of $\int_{0}^{4} f(x) d x$?
(A) -1
(B) 0
(C) 2
(D) 6
(E) 12
39.

Graph of f
The graph of the function f consists of two line segments, as shown in the figure above. The value of $\int_{0}^{3}|f(x)| d x$ is
(A) $-\frac{3}{2}$
(B) $\frac{1}{2}$
(C) $\frac{3}{2}$
(D) $\frac{5}{2}$
(E) nonexistent
40.

Graph of f^{\prime}
The graph of f^{\prime}, the derivative of f, is shown in the figure above. If $f(0)=20$, which of the following could be the value of $f(5)$?

Integrals 1 Test Review

(A) 15
(B) 20
(C) 25
(D) 35
(E) 40
41.

The graph of g^{\prime}, the first derivative of the function g, consists of a semicircle of radius 2 and two line segments, as shown in the figure above. If $g(0)=1$, what is $g(3)$?
(A) $\pi+1$
(B) $\pi+2$
(C) $2 \pi+1$
(D) $2 \pi+2$

Integrals 1 Test Review

42. $\int_{-2}^{1}\left(8 x^{3}-3 x^{2}\right) d x=$
(A) -561
(B) -90
(C) -39
(D) 81
43.

Graph of f^{\prime}
The graph of f^{\prime}, the derivative of a function f, consists of two line segments and a semicircle, as shown in the figure above. If $f(2)=1$, then $f(-5)=$

Integrals 1 Test Review

(A) $2 \pi-2$
(B) $2 \pi-3$
(C) $2 \pi-5$
(D) $6-2 \pi$
(E) $4-2 \pi$
44.

$$
\int\left(e^{x}+e\right) d x=
$$

(A) $e^{x}+C$
(B) $2 e^{x}+C$
(C) $e^{x}+e+C$
(D) $e^{x+1}+e x+C$
(E) $e^{x}+e x+C$
45. $\int 2^{x} d x=$

Integrals 1 Test Review

(A) $2^{x}+C$
(B) $(\ln 2) 2^{x}+C$
(C) $\frac{2^{x}}{\ln 2}+C$
(D) $\frac{2^{x+1}}{x+1}+C$
46.

x	0	2	4	6
$f(x)$	-22	-6	2	2
$f^{\prime}(x)$	10	6	2	-2

Selected values of the twice-differentiable function f and its derivative f^{\prime} are given in the table above. What is the value of $\int_{0}^{6} f^{\prime}(x) d x$?
(A) -12
(B) 12
(C) 24
(D) 36

Integrals 1 Test Review

47.

Graph of f

The graph of the function f on the interval $-4 \leq x \leq 7$ consists of three line segments and two semicircles, as shown in the figure above. What is the value of $\int_{-4}^{7} f(x) d x$?
(A) $\frac{3}{2} \pi+\frac{3}{2}$
(B) $\frac{3}{2} \pi+\frac{11}{2}$
(C) $\frac{5}{2} \pi+\frac{7}{2}$
(D) $\frac{5}{2} \pi+\frac{15}{2}$
48. If $\int_{-1}^{3}(2 g(x)+4) d x=22$ and $\int_{10}^{-1} g(x) d d x=12$, then $\int_{3}^{10} g(x) d x=$

Integrals 1 Test Review

(A) -21
(B) -15
(C) -9
(D) 9
49.

x	0	1	2	3	4	5	6
$f(x)$	0	5	2	-1	-2	0	3

The function f is continuous on the closed interval [0,6] and has values as shown in the table above. Using the intervals [0,2], [2,4], and [4,6], what is the approximation of $\int_{0}^{6} f(x) d x$ obtained from a midpoint Riemann sum?
(A) 0
(B) 3
(C) 4
(D) 6
(E) 8
50. The average value of a function f over the interval $[-1,2]$ is -4 , and the average value of f over the interval $[2,7]$ is 8 . What is the average value of f over the interval $[-1,7]$?

Integrals 1 Test Review

(A) $\frac{1}{2}$
(B) 2
(C) $\frac{7}{2}$
(D) 14
51. Let f be the function given by $f(x)=\int_{10}^{x}\left(-t^{2}+2 t+3\right) d t$. On what intervals is f increasing?
(A) $(-\infty, 1]$
(B) $[-1,3]$
(C) $[1, \infty)$
(D) $(-\infty,-1]$ and $[3, \infty)$
52. Which of the following is a left Riemann sum approximation of $\int_{1}^{7}(4 \ln x+2) d x$ with n subintervals of equal length?

Integrals 1 Test Review

(A) $\sum_{k=1}^{n}\left(4 \ln \left(1+\frac{k-1}{n}\right)+2\right) \frac{1}{n}$
(B) $\sum_{k=1}^{n}\left(4 \ln \left(\frac{6 k}{n}\right)+2\right) \frac{6}{n}$
(C) $\sum_{k=1}^{n}\left(4 \ln \left(1+\frac{6(k-1)}{n}\right)+2\right) \frac{6}{n}$
(D) $\sum_{k=1}^{n}\left(4 \ln \left(1+\frac{6 k}{n}\right)+2\right) \frac{6}{n}$
53. Which of the following is a left Riemann sum approximation of $\int_{2}^{8} \cos \left(x^{2}\right) d x$ with n subintervals of equal length?
(A) $\sum_{k=1}^{n}\left(\cos \left(2+\frac{k-1}{n}\right)^{2}\right) \frac{1}{n}$
(B) $\sum_{k=1}^{n}\left(\cos \left(\frac{6 k}{n}\right)^{2}\right) \frac{6}{n}$
(C) $\sum_{k=1}^{n}\left(\cos \left(2+\frac{6(k-1)}{n}\right)^{2}\right) \frac{6}{n}$
(D) $\sum_{k=1}^{n}\left(\cos \left(2+\frac{6 k}{n}\right)^{2}\right) \frac{6}{n}$

