Pere Calculus
\qquad Period \qquad Intro to Law of Cosines and Word Problem Notes
\qquad
Flight of a Plane
) A pilot is flying over a straight highway. He determines the angles of depression to two mileposts, P and Q, 5 miles apart, to be 32° and 48°, respectively. (a) Find the distance of the plane from milepost P. (b) Find the distance of the plane from milepost Q. (c) What is the elevation of the plane?

$$
\left(\begin{array}{l}
\text { (a) } q=3.8 \\
\text { (b) } p=2.7
\end{array}\right.
$$

$$
\sin 48^{\circ}=\frac{E}{2.7}
$$

$E=2.7 \sin 48^{\circ}$

$$
\begin{aligned}
& \frac{\sin 100^{\circ}}{5}=\frac{\sin 48^{\circ}}{q} \quad \frac{\sin 100^{\circ}}{5}=\frac{\sin 32^{\circ}}{p} \\
& q=\frac{5 \sin 48^{\circ}}{\sin 100^{\circ}}
\end{aligned} \quad p=\frac{5 \sin 32^{\circ}}{\sin 100^{\circ}}=
$$

$$
\text { (c) } E=2
$$

$$
\text { 3) } \operatorname{In} \Delta K A P, p=13, h=21, k=29
$$

$$
\begin{aligned}
& \text { n } \Delta K H P P_{2}=1,3=21, k=29 \\
& 29^{2}=21^{2}+2(13)(2) \cos K \\
& 29^{2}-13^{2}-21^{2}
\end{aligned}
$$

$$
\frac{29^{2}-13^{2}-211^{2}}{}=\cos K
$$

$$
\angle P^{\circ}=24^{\circ}
$$

$\angle K=115^{\circ} \quad \angle H=41^{\circ}$

$$
\angle K=115^{\circ}
$$

$$
\angle H=41^{\circ}
$$

$$
\frac{\sin 125^{\circ}}{43.5}=\frac{\sin E}{24}
$$

$$
\sin ^{-1}\left(\frac{24 \sin 125^{\circ}}{43.5}\right)=E
$$

$$
\begin{aligned}
& \angle F=28.2^{\circ} \\
& d^{2}=24^{2}+25^{2}-2(2)(x) \cos 125^{\circ} \\
& d=43.5 \\
& \angle E=26.8^{\circ} \\
& 24^{2}=(43.5)^{2}+(25)^{2}-2(435) \cos \cos E \\
& \frac{24^{2}-(43.5)^{2}-(25)^{2}}{(-2)(43.5)(25)}=\cos E \\
& (-2)(43.5)(25)
\end{aligned}
$$

Intro to Law of Cosines and Word Problem Notes

\qquad Period

Flight of a Plane

1) A pilot is flying over a straight highway. He determines the angles of depression to two mileposts, P and Q, 5 miles apart, to be 32° and 48°, respectively. (a) Find the distance of the plane from milepost P. (b) Find the distance of the plane from milepost Q. (c) What is the elevation of the plane?
(a) 3.77 miles (b) 2.69 miles (c) 2 miles

Solve each triangle. Round your answers to the nearest tenth.
2) In $\triangle D E F, e=24, m \angle D=125^{\circ}, f=25$
$m \angle E=26.9^{\circ}, m \angle F=28.1^{\circ}, d=43.5$
3) In $\triangle K H P, p=13, h=21, k=29$
$m \angle K=115^{\circ}, m \angle H=41^{\circ}, m \angle P=24^{\circ}$
4) In $\triangle E F D, e=19.9, d=24, f=22.7$
$m \angle E=50.4^{\circ}, m \angle F=61.4^{\circ}, m \angle D=68.2^{\circ}$
5) In $\triangle R S T, m \angle R=92^{\circ}, s=29, t=28$
$m \angle S=45^{\circ}, m \angle T=43^{\circ}, r=41$
6) Observers at P and Q are located on the side of the hill that is inclined 31° to the horizontal. The observer at P determines the angle of elevation to the hot-air balloon, B , to be 68°. At the same instant, the observer at Q measures the angle of elevation to the balloon to be 77°. If P is 98 m down the hill from Q , find the distance from Q to the balloon.

377 m
7) Two straight roads diverge at an angle of 52°. Two cars leave the intersection at 12:15 P.M., one traveling at $46 \mathrm{mi} / \mathrm{hr}$ and the other at $62 \mathrm{mi} / \mathrm{hr}$. How far apart are the cars at 1:06 P.M.?
42.1 mi

