BC Parametrics Test Review

1. For $0 \leq t \leq 13$, an object travels along an elliptical path given by the parametric equations $x=3 \cos t$ and $y=4 \sin t$. At the point where $t=13$, the object leaves the path and travels along the line tangent to the path at that point. What is the slope of the line on which the object travels?
(A) $-\frac{4}{3}$
(B) $-\frac{3}{4}$
(C) $-\frac{4 \tan 13}{3}$
(D) $-\frac{4}{3 \tan 13}$
(E) $-\frac{3}{4 \tan 13}$
2. A curve C is defined by the parametric equations $x=t^{2}-4 t+1$ and $y=t^{3}$. Which of the following is an equation of the line tangent to the graph of C at the point $(-3,8)$?
(A) $x=-3$
(B) $x=2$
(C) $y=8$
(D) $y=-\frac{27}{10}(x+3)+8$
(E) $y=12(x+3)+8$
3. A curve is described by the parametric equations $x=t^{2}+2 t$ and $y=t^{3}+t^{2}$. An equation of the line tangent to the curve at the point determined by $t=1$ is

BC Parametrics Test Review

(A) $2 x-3 y=0$
(B) $4 x-5 y=2$
(C) $4 x-y=10$
(D) $5 x-4 y=7$
(E) $5 x-y=13$
4. If $x=t^{2}-1$ and $y=2 \mathrm{e}^{\mathrm{t}}$, then $\frac{d y}{d x}=$
(A) $\frac{e^{t}}{t}$
(B) $\frac{2 e^{t}}{t}$
(C) $\frac{e^{|t|}}{t^{2}}$
(D) $\frac{4 e^{t}}{2 t-1}$
(E) e^{t}
5. A particle moves along the curve $x y=10$. If $x=2$ and $d y / d t=3$, what is the value of $d x / d t$?

BC Parametrics Test Review

(A) $-5 / 2$
(B) $-6 / 5$
(C) 0
(D) $4 / 5$
(E) $6 / 5$
6. Consider the curve in the $x y$-plane represented by $x=e^{t}$ and $y=t e^{-t}$ for $t \geq 0$. The slope of the line tangent to the curve at the point where $x=3$ is
(A) 20.086
(B) 0.342
(C) -0.005
(D) -0.011
(E) -0.033
7. If $x=\mathrm{e}^{2 t}$ and $y=\sin (2 t)$, then $\frac{d y}{d x}=$

BC Parametrics Test Review

(A) $4 e^{2 t} \cos (2 \mathrm{t})$
(B) $\frac{e^{2 t}}{\cos (2 t)}$
(C) $\frac{\sin (2 t)}{2 e^{2 t}}$
(D) $\frac{\cos (2 \mathrm{t})}{2 e^{2 t}}$
(E) $\frac{\cos (2 t)}{e^{2 t}}$
8. For what values of t does the curve given by the parametric equations $x=t^{3}-t^{2}-1$. and $y=t^{4}+2 t^{2}-8 t$ have a vertical tangent?
(A) 0 only
(B) 1 only
(C) 0 and $\frac{2}{3}$ only
(D) $0, \frac{2}{3}$, and 1
(E) No value
9. A curve in the plane is defined parametrically by the equations $x=t^{3}+\mathrm{t}$ and $y=t^{4}+2 t^{2} \mathrm{An}$ equation of the line tangent to the curve at $t=1$ is

BC Parametrics Test Review

(A) $y=2 x$
(B) $y=8 x$
(C) $y=2 x-1$
(D) $y=4 x-5$
(E) $y=8 x+13$
10. If $x=t^{2}+1$ and $y=t^{3}$, then $\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}=$
(A) $3 / 4 t$
(B) $3 / 2 \mathrm{t}$
(C) $3 t$
(D) $6 t$
(E) $3 / 2$
11. The length of a curve from $x=1$ to $x=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve?

BC Parametrics Test Review

(A) $y=3+3 x^{2}$
(B) $y=5+x^{3}$
(C) $y=6+x^{3}$
(D) $y=6-x^{3}$
(E) $y=\frac{16}{5}+x+\frac{9}{5} x^{5}$
12. Which of the following integrals gives the length of the graph $y=\sin (\sqrt{x})$ between $x=a$ and $x=b$, where $0<a<b$?
(A) $\int_{a}^{b} \sqrt{x+\cos ^{2}(\sqrt{x})} d x$
(B) $\int_{a}^{b} \sqrt{1+\cos ^{2}(\sqrt{x})} d x$
(C) $\int_{a}^{b} \sqrt{\sin ^{2}(\sqrt{x})+\frac{1}{4 x} \cos ^{2}(\sqrt{x})} d x$
(D) $\int_{a}^{b} \sqrt{1+\frac{1}{4 x} \cos ^{2}(\sqrt{x})} d x$
(E) $\int_{a}^{b} \sqrt{\frac{1+\cos ^{2}(\sqrt{x})}{4 x}} d x$
13. The length of the curve $y=\ln \sec x$ from $x=0$ to $x=b$, where $0<b<\frac{\pi}{2}$, may be expressed by which of the following integrals?

BC Parametrics Test Review

(A) $\int_{0}^{b} \sec x d x$
(B) $\int_{0}^{b} \sec ^{2} x d x$
(C) $\int_{0}^{b}(\sec x \tan x) d x$
(D) $\int_{0}^{b} \sqrt{1+(\ln \sec x)^{2}} d x$
(E) $\int_{0}^{b} \sqrt{1+\left(\sec ^{2} x \tan ^{2} x\right)} d x$
14. Which of the following gives the length of the path described by the parametric equations $x=\sin \left(t^{3}\right)$ and $y=e^{5 t}$ fromt $=0$ tot $=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos \left(t^{3}\right)+5 e^{5 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(3 t^{2}\right)+e^{10 t}} d t$
15. The length of the curve determined by the equations $x=t^{2}$ and $y=t$ from $t=0$ to $t=4$ is

BC Parametrics Test Review

(A) $\int_{0}^{4} \sqrt{4 t+1} d t$
(B) $2 \int_{0}^{4} \sqrt{l^{2}+1} d t$
(C) $\int_{0}^{4} \sqrt{2 t^{2}+1} d t$
(D) $\int_{0}^{4} \sqrt{4 t^{2}+1} d t$
(E) $2 \pi \int_{0}^{4} \sqrt{4 l^{2}+1} d t$
16. The length of the path described by the parametric equations $x=\cos ^{3} t$ and $y=\sin ^{3} t$, for $0 \leq t \leq \frac{\pi}{2}$ is given by
(A) $\int_{0}^{\frac{\pi}{2}} \sqrt{3 \cos ^{2} t+3 \sin ^{2} t} d t$
(B) $\int_{0}^{\frac{\pi}{2}} \sqrt{-3 \cos ^{2} t \sin t+3 \sin ^{2} t \cos t} d t$
(C) $\int_{0}^{\frac{\pi}{2}} \sqrt{9 \cos ^{4} t+9 \sin ^{4} t} d t$
(D) $\int_{0}^{\frac{\pi}{2}} \sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t} d t$
(E) $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos ^{6} t+\sin ^{6} t} d t$
17. At timet ≥ 0, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle t^{2}, 5 t\right\rangle$. What is the acceleration vector of the particle at timet=3 ?

BC Parametrics Test Review

(A) $\left\langle 9, \frac{45}{2}\right\rangle$
(B) $\langle 6,5\rangle$
(C) $\langle 2,0\rangle$
(D) $\sqrt{306}$
(E) $\sqrt{61}$
18. In the $x y$-plane, a particle moves along the parabola $y=x^{2}-x$ with a constant speed of $2 \sqrt{10}$ units per second. If $\frac{d x}{d t}>0$, what is the value of $\frac{d y}{d t}$ when the particle is at the point $(2,2) ?$
(A) $\frac{2}{3}$
(B) $\frac{2 \sqrt{10}}{3}$
(C) 3
(D) 6
(E) $6 \sqrt{10}$
19. A particle moves on the curve $y=\ln x$ so that the x-component has velocity $x^{\prime}(t)=t+1$ for $t \geq 0$. At time $t=0$, the particle is at the point $(1,0)$. At time $t=1$, the particle is at the point

BC Parametrics Test Review

(A) $(2, \ln 2)$
(B) $\left(e^{2}, 2\right)$
(C) $\left(\frac{5}{2}, \ln \frac{5}{2}\right)$
(D) $(3, \ln 3)$
(E) $\left(\frac{3}{2}, \ln \frac{3}{2}\right)$
20. A particle moves in the $x y$-plane so that at any time t its coordinates are $x=t^{2}-1$ and $y=t^{4}-2 t^{3}$ At $t=1$, its acceleration vector is
(A) $(0,-1)$
(B) $(0,12)$
(C) $(2,-2)$
(D) $(2,0)$
(E) $(2,8)$
21. If a particle moves in the $x y$-plane so that at time $t>0$ its position vector is $\left(\ln \left(t^{2}+2 t\right), 2 t^{2}\right)$, then at time $t=2$, its velocity vector is

BC Parametrics Test Review

(A) $\left(\frac{3}{4}, 8\right)$
(B) $\left(\frac{3}{4}, 4\right)$
(C) $\left(\frac{1}{8}, 8\right)$
(D) $\left(\frac{1}{8}, 4\right)$
(E) $\left(-\frac{5}{16}, 4\right)$
22. A particle moves on a plane curve so that at any time $t>0$ its x-coordinate is $t^{3}-t$ and its y-coordinate is $(2 t-1)^{3}$. The acceleration vector of the particle at $t=1$ is
(A) $(0,1)$
(B) $(2,3)$
(C) $(2,6)$
(D) $(6,12)$
(E) $(6,24)$
23. For any timet ≥ 0, if the position of a particle in the $x y$-plane is given by $x=t^{2}+1$ and $y=\ln (2 t+3)$, then the acceleration vector is

BC Parametrics Test Review

(A) $(2 t, 2 /(2 t+3))$
(B) $\left(2,-4 /(2 t+3)^{2}\right)$
(C) $\left(2,4 /(2 t+3)^{2}\right)$
(D) $\left(2,2 /(2 t+3)^{2}\right)$
(E) $\left(2 t,-4 /(2 t+3)^{2}\right)$

