1. Which of the following series diverge?

$$\begin{split} & \| \sum_{n=0}^{\infty} \left( \frac{\sin 2}{\pi} \right)^n \\ & \| \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \\ & \| \| \sum_{n=1}^{\infty} \left( \frac{e^n}{e^n + 1} \right) \end{split}$$

(A) III only

(B) I and II only

C I and III only

D II and III only

E I, II, and III





3. Which of the following series converge to 2?

$$\begin{split} & \text{I.} \sum_{n=1}^{\infty} \frac{2n}{n+3} \\ & \text{II.} \sum_{n=1}^{\infty} \frac{-8}{\left(-3\right)^n} \\ & \text{III.} \sum_{n=0}^{\infty} \frac{1}{2^n} \end{split}$$

- (A) I only
- (B) II only

(c) III only

(D) I and III only

E II and III only

4. The sum of the infinite geometric series <sup>3</sup>/<sub>2</sub> + <sup>9</sup>/<sub>16</sub> + <sup>27</sup>/<sub>128</sub> + <sup>81</sup>/<sub>1,024</sub> + ... is
▲ 1.60
● 2.35
● 2.40
● 2.45
● 2.50



| 5. What are all values of $p$ for which $\int_1^\infty \frac{1}{x^{2p}} dx$ converges?                         |   |
|----------------------------------------------------------------------------------------------------------------|---|
| $ (A) \ p < -1 $                                                                                               |   |
| (B) $p > 0$                                                                                                    |   |
| $\bigcirc p > \frac{1}{2}$                                                                                     | ~ |
| (D) $p > 1$                                                                                                    |   |
| (E) There are no values of $p$ for which this integral converges.                                              |   |
| 6. What are all values of $p$ for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^p + 1}$ converges? |   |
| $ (A) \ p > 0 $                                                                                                |   |
| (A) $p > 0$<br>(B) $p \ge 1$<br>(C) $p > 1$                                                                    |   |
| © <i>p</i> > 1                                                                                                 |   |
| $\bigcirc p \ge 2$                                                                                             |   |
| $(\mathbf{E}) p > 2$                                                                                           | ~ |
|                                                                                                                |   |

7. Which of the following series converge?

$$I.\sum_{n=1}^{\infty}\frac{1}{n^2} \qquad II.\sum_{n=1}^{\infty}\frac{1}{n} \qquad III.\sum_{n=1}^{\infty}\frac{(-1)^n}{\sqrt{n}}$$



9. Which of the following series converges for all real numbers x?





The function *f* is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} rac{(-1)^n x^{2n}}{(2n+1)!} = 1 - rac{x^2}{3!} + rac{x^4}{5!} - rac{x^6}{7!} + ... + rac{(-1)^n x^{2n}}{(2n+1)!} + ...$$

for all real numbers x.



**11.** Show that  $1 - \frac{1}{3!}$  approximates f(1) with error less than  $\frac{1}{100}$ .

Please respond on separate paper, following directions from your teacher.

#### Part B

1 point is earned for correctly showing error bound  $< \frac{1}{100}f(1) = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + ... + \frac{(-1)^n}{(2n+1)!} + ...$ 

This is an alternating series whose terms decrease in absolute value with limit 0. Thus, the error is less than the first omitted term, so  $|f(1) - (1 - \frac{1}{3!})| \le \frac{1}{5!} = \frac{1}{120} < \frac{1}{100}$ .



The student response earns one of the following points:

1 point is earned for correctly showing error bound <  $\frac{1}{100}$ 

$$f(1) = 1 - rac{1}{3!} + rac{1}{5!} - rac{1}{7!} + ... + rac{(-1)^n}{(2n+1)!} + ...$$

This is an alternating series whose terms decrease in absolute value with limit 0. Thus, the error is less than the first omitted term, so  $|f(1) - (1 - \frac{1}{3!})| \le \frac{1}{5!} = \frac{1}{120} < \frac{1}{100}$ .

Let *f* be the function given by  $f(x) = e^{-2x^2}$ .

**12.** Let *g* be the function given by the sum of the first four nonzero terms of the power series for f(x) about x=0. Show that |f(x)-g(x)| < 0.02 for  $-0.6 \le x \le 0.6$ .

Please respond on separate paper, following directions from your teacher.

#### Part C

1 point is earned for correctly alternating series bound of  $\frac{16x^8}{4!}$ 

$$f(x) - g(x) = rac{16x^8}{4!} - rac{32x^{16}}{5!} + \cdots$$

1 point is earned for correctly using x = 0.6

This is an alternating series for each *x*, since powers of *x* are even.

Also,  $\left|\frac{a_n+1}{a_n}\right|=\frac{2}{n+1}x^2<1$  for  $-0.6\leq x\leq 0.6$  so terms are decreasing in absolute value

1 point is used for the correct conclusion

Thus 
$$\left| f(x) - g(x) 
ight| \leq rac{16x^8}{4!} \leq rac{16(0.6)^8}{4!} = 0.011 \cdots < 0.02$$

|   |   |   | × |  |
|---|---|---|---|--|
| 0 | 1 | 2 | 3 |  |

The student response earns three of the following points:

1 point is earned for correctly alternating series bound of  $\frac{16x^8}{4!}$ 

$$f(x) - g(x) = rac{16x^8}{4!} - rac{32x^{16}}{5!} + \cdots$$

1 point is earned for correctly using x = 0.6

This is an alternating series for each *x*, since powers of *x* are even.

Also,  $\left|\frac{a_n+1}{a_n}\right|=\frac{2}{n+1}x^2<1$  for  $-0.6\leq x\leq 0.6$  so terms are decreasing in absolute value

1 point is used for the correct conclusion

$$ext{Thus} egin{array}{l} ig| f(x) - g(x) ig| \leq rac{16x^8}{4!} \leq rac{16(0.6)^8}{4!} \ = 0.011 \cdots < 0.02 \end{array}$$



13. For a series S, let  $s = 1 - \frac{1}{9} + \frac{1}{2} - \frac{1}{25} + \frac{1}{4} - \frac{1}{49} + \frac{1}{8} - \frac{1}{81} + \frac{1}{16} - \frac{1}{121} + \dots + a_n + \dots$  where  $a_n = \begin{cases} \frac{1}{2^{(n-1)/2}} & \text{if } n \text{ is odd} \\ \frac{-1}{(n+1)^2} & \text{if } n \text{ is even.} \end{cases}$ 

Which of the following statements are true?

- I. S converges because the terms of S alternate and  $\lim_{n \to \infty} a_n = 0$
- II. S diverges because it is not true that  $|a_{n+1}| < |a_n|$  for all n.
- III. S converges although it is not true that  $|a_{n+1}| < |a_n|$  for all *n*.



14. If 
$$f(x) = \sum_{k=1}^{\infty} \left(\sin^2 x\right)^k$$
 , then  $f(1)$  is



| A   | 0.369                                                                                                                  |  |
|-----|------------------------------------------------------------------------------------------------------------------------|--|
| В   | 0.585                                                                                                                  |  |
| c   | 2.400                                                                                                                  |  |
| D   | 2.426                                                                                                                  |  |
| E   | 3.426                                                                                                                  |  |
|     |                                                                                                                        |  |
| 15. | Which of the following statements is true about the series $\sum_{n=1}^{\infty} rac{\left(-1 ight)^n}{\sqrt[3]{n}}$ ? |  |
| A   | The series converges conditionally.                                                                                    |  |
| В   | The series converges absolutely.                                                                                       |  |
| c   | The series converges but neither conditionally nor absolutely.                                                         |  |
| D   | The series diverges.                                                                                                   |  |
|     |                                                                                                                        |  |

16. Which of the following series is conditionally convergent?



(A) 
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$
  
(B)  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{17+n}{\sqrt{n}}$   
(C)  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{17+\sqrt{n}}{n}$ 

17. For what values of *p* is the series  $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^p + 2}$  conditionally convergent?

 $( A ) \ 0$ 

(B) p > 1

$$\fbox{c} 1 only$$

D p > 2 only

18. Which of the following statements is true?

(A) The series  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$  diverges by the alternating series test. (B) The series  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4\sqrt{n}}{2+\sqrt{n}}$  converges by the alternating series test. (C) The series  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos(n\pi)}{n^2}$  converges by the alternating series test. (D) The series  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{9+n^2}$  converges by the alternating series test.



ō

4π

8π

19. The alternating series test can be used to show convergence for which of the following series?

$$1.1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \frac{1}{36} + \dots + a_n + \dots, \text{ where } a_n = (-1)^{n+1} \frac{1}{n^2}$$

$$2. \sin 1 - \frac{\sin 2}{4} + \frac{\sin 3}{9} - \frac{\sin 4}{16} + \frac{\sin 5}{25} - \frac{\sin 6}{36} + \dots + b_n + \dots, \text{ where } b_n = (-1)^{n+1} \frac{\sin n}{n^2}$$

$$3. \qquad \frac{1}{\sqrt{2}+1} - \frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}+1} - \frac{1}{\sqrt{3}-1} + \frac{1}{\sqrt{4}+1} - \frac{1}{\sqrt{4}-1} + \dots + c_n + \dots, \text{ where } b_n = (-1)^{n+1} \frac{\sin n}{n^2}$$

$$c_n = \begin{cases} \frac{1}{\sqrt{k+1}+1} & \text{if } n = 2k - 1 \\ -\frac{1}{\sqrt{k+1}-1} & \text{if } n = 2k \end{cases}$$





32π

(A)

The series converges by the alternating series test.

# **Series Review Stuff**

| В   | The alternating series test cannot be used to determine convergence because the series is not alternating.      |
|-----|-----------------------------------------------------------------------------------------------------------------|
| c   | The alternating series test cannot be used to determine convergence because $\lim_{n 	o \infty} b_n  eq 0$ .    |
| D   | The alternating series test cannot be used to determine convergence because the terms $b_n$ are not decreasing. |
|     |                                                                                                                 |
| 21. | Which of the following is not a <i>p</i> -series?                                                               |
| A   | $\sum_{n=1}^{\infty} n^{-4}$                                                                                    |
| В   | $\sum_{n=1}^{\infty} \frac{1}{n}$                                                                               |
| c   | $\sum_{n=1}^{\infty} \frac{1}{n^e}$                                                                             |
| D   | $\sum_{n=1}^{\infty} \frac{1}{e^n} \qquad \checkmark$                                                           |
|     |                                                                                                                 |
| 22. | Which of the following statements about the series $\sum_{n=1}^\infty \sin\!\left(rac{1}{n} ight)$ is true?    |
| A   | The series diverges by the $n\mathbf{th}$ term test.                                                            |
| В   | The series diverges by comparison to the series $\sum_{n=1}^{\infty} \frac{1}{n}$ .                             |
| c   | The series diverges by limit comparison to the series $\sum_{n=1}^{\infty} \frac{1}{n}$ .                       |
| D   | The series diverges by limit comparison to the series $\sum_{n=1}^{\infty} n$ .                                 |
|     |                                                                                                                 |



23. Which of the following series can be used with the limit comparison test to determine whether the  $\int_{1}^{\infty} 4^{n}$ 



24. If *b* and *t* are real numbers such that 0 < |t| < |b|, which of the following infinite series has sum  $\frac{1}{b^2+t^2}$ ?



25. If  $a_n = \cos\left(\frac{\pi}{n}\right)$  for n = 1, 2, ..., which of the following statements about  $\sum_{n=0}^{\infty} a_n$  must be true?



(A) The series converges and 
$$\lim_{n \to \infty} a_n = 0$$

(B) The series diverges and  $\lim_{n \to \infty} a_n = 0$ .

C The series converges and  $\lim_{n\to\infty}a_n\neq 0$ .

D The series diverges and  $\lim_{n \to \infty} a_n \neq 0$ .



27. What is the value of 
$$\sum_{n=0}^{\infty} \left(-\frac{2}{3}\right)^n$$
 ?





Let an=1nln  $\Box$ n for n≥3.



**29.** Consider the infinite series  $\sum_{n=3}^{\infty}(-1)^{n+1}a_n=\frac{1}{3\ln 3}-\frac{1}{4\ln 4}+\frac{1}{5\ln 5}-\cdots$  Identify the

properties of this series that guarantee the series coverage. Explain why the sum of this series is less than  $\frac{1}{3}$ .

Please respond on separate paper, following directions from your teacher.

## Part B

The response can earn up to 2 points:

- 1 point: properties
- 1 point: explanation

The terms in this alternating series decrease in absolute value and  $\lim n \to \infty 1$  nlnn =0. Therefore, the Alternating Series Test guarantees that this series converges. Furthermore,

$$\frac{1}{3In \ 3} - \frac{1}{4In \ 4} < \text{Sum} < \frac{1}{3In \ 3} < \frac{1}{3}$$

Therefore, the sum of the series is less than 13.



The response can earn up to 2 points:

1 point: properties

1 point: explanation

The terms in this alternating series decrease in absolute value and  $\lim n \to \infty 1$  nlnn =0. Therefore, the Alternating Series Test guarantees that this series converges. Furthermore,

 $\frac{1}{3In \ 3} - \frac{1}{4In \ 4} < Sum < \frac{1}{3In \ 3} < \frac{1}{3}$ 

Therefore, the sum of the series is less than 13.



The function g has derivatives of all orders, and the Maclaurin series for g is

$$\sum_{n=0}^{\infty} \left(-1\right)^{n} \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^{3}}{5} + \frac{x^{5}}{7} - \cdots$$

**30.** The Maclaurin series for *g* evaluated at x = 1/2 is an alternating series whose terms decrease in absolute value to 0. The approximation for g(1/2) using the first two nonzero terms of this series is 17/120. Show that this approximation differs from g(1/2) by less than 1/200.

Please respond on separate paper, following directions from your teacher.

#### Part B

One point is earned for uses the third term as an error bound

One point is earned for error bound

$$\left|g\left(\frac{1}{2}\right) - \frac{17}{120}\right| < \frac{\left(\frac{1}{2}\right)^{5}}{7} = \frac{1}{224} < \frac{1}{200}$$



The student earns all of the following points:

One point is earned for uses the third term as an error bound

One point is earned for error bound

$$\left|g\left(\frac{1}{2}\right) - \frac{17}{120}\right| < \frac{\left(\frac{1}{2}\right)^5}{7} = \frac{1}{224} < \frac{1}{200}$$