\qquad
Word Problem Notes Date \qquad Period \qquad

1) 1000 tickets were sold. Adult tickets cost $\$ 8.50$, children's cost $\$ 4.50$, and a total of $\$ 7300$ was collected. How many tickets of each kind were sold?
system: $8.5 A+4.5 C=7300$

Matrix: $\left[\begin{array}{cc}8.5 & 4.5 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}A \\ C\end{array}\right]=\left[\begin{array}{c}7300 \\ 1000\end{array}\right] \frac{1}{4}\left[\begin{array}{cc}1 & -4.5 \\ -1 & 8.5\end{array}\right] \cdot\left[\begin{array}{c}7300 \\ 1000\end{array}\right]=\left[\begin{array}{c}700 \\ 300\end{array}\right]$
2) Mrs. B. invested $\$ 58,855$; part at an interest rate of 5%, and part at an interest of 8%. The total interest collected on the investment was $\$ 3,929$. How much did she invest at each rate?
system: $x+y=58,855$

$$
05 x+.08 y=3,929 \quad \begin{aligned}
& x=25,80 \\
& y=3,875 \\
& \hline
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
.05 & 08
\end{array}\right]^{-1}\left[\begin{array}{c}
58,655 \\
3929
\end{array}\right]
$$

3) Samantha has 44 coins, consisting of quarters, dimes, and nickels which total $\$ 7.15$. There are twice
as many nickels as dimes. How many of each does she have?

$$
\begin{gathered}
\begin{aligned}
Q+D+N & =44 \\
25 Q+.10 D+.05 N & =7.15 \\
-2 D+N & =0
\end{aligned} \quad\left[\begin{array}{l}
Q \\
D \\
N
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
.25 & 10.05 \\
0 & -21
\end{array}\right]^{-1}\left[\begin{array}{c}
44 \\
7.15 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
25 & 10 & .05 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
Q \\
D \\
N
\end{array}\right]=\left[\begin{array}{c}
44 \\
7.15 \\
0
\end{array}\right] \quad\left[\begin{array}{c}
Q \\
D \\
N
\end{array}\right]=\left[\begin{array}{c}
23 \\
7 \\
14
\end{array}\right]}
\end{gathered}
$$

$5.75+.70=46.454 .70=-79.15$
4) A boat traveled 168 miles each way downstream and back. The trip downstream took 12 hours. The trip back took 21 hours. Find the [speed of the boat] in still water and the [peed of the current.]

$$
\begin{array}{rlrl}
\frac{168}{12}=14 & B+C=14 & {\left[\begin{array}{l}
B \\
C
\end{array}\right]} & =\frac{1}{-2}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
14 \\
8
\end{array}\right] \\
\frac{168}{21}=8 & B-C=8 & & =-\frac{1}{2}\left[\begin{array}{l}
-14-8 \\
-14+8
\end{array}\right] \\
{\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
B \\
C
\end{array}\right]=\left[\begin{array}{c}
14 \\
8
\end{array}\right]} & & =-\frac{1}{2}\left[\begin{array}{c}
-22 \\
-6
\end{array}\right]=\left[\begin{array}{l}
11 \\
3
\end{array}\right]
\end{array}
$$

If the following matrix does not have an inverse, find the value of \boldsymbol{x}.

$$
\begin{aligned}
& \text { If the following matrix does not have an inverse, find the value of } x \\
& \begin{array}{c}
\text { 5) } \\
{\left[\begin{array}{cc}
-5 & 4 \\
9 & x
\end{array}\right]} \\
-5 x-4.9=0 \\
-5 x-36=0 \\
\\
-5 x=36
\end{array}
\end{aligned}
$$

Evaluate. Remember, this is the notation for the determinant of a matrix.
6)

$$
-25-8=-33
$$

Find the inverse ofach matrix.

$$
\begin{aligned}
\int_{8)}^{A} \\
{\left[\begin{array}{cc}
-8 & 3 \\
-1 & -1
\end{array}\right] }
\end{aligned} \text { det } A=8-(-3)
$$

No Inverse possible

$$
A^{-1}=\frac{1}{11}\left[\begin{array}{rr}
-1 & -3 \\
1 & -8
\end{array}\right]
$$

$$
\begin{aligned}
& A^{-1} \cdot A=I \\
& \frac{1}{11}\left[\begin{array}{cc}
-1 & -3 \\
1 & -8
\end{array}\right]\left[\begin{array}{cc}
-8 & 3 \\
-1 & -1
\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}
11 & 0 \\
0 & 11
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Find the area of a triangle with the given vertices.

$$
\begin{gathered}
\frac{1}{2}\left|\begin{array}{ccc}
\operatorname{det} & 315 & 1 \\
105 & 1 \\
1 & 1 & 1
\end{array}\right| \\
=35
\end{gathered}
$$

$$
(\sqrt{50})^{2}=(\sqrt{130})^{2}+(10)^{2}-2 \sqrt{130} \cdot 10 \cdot \cos A
$$

11) $(-2,5),(4,2)$, and $(0,7)$

$$
\begin{aligned}
& \frac{1}{2}|\operatorname{det}| \begin{array}{ccc}
-1,7),(2,6), \operatorname{and}(4,-3) \\
2 & 6 & 1 \\
4 & -3 & 1
\end{array}|\mid \\
& =\frac{1}{2} \cdot 25 \\
& =12.5
\end{aligned}
$$

$$
\begin{gathered}
\left.\frac{1}{2}|\operatorname{det}| \begin{array}{rrr}
-2 & 5 & 1 \\
4 & 2 & 1 \\
0 & 7 & 1
\end{array} \right\rvert\, \\
=9
\end{gathered}
$$

Word Problem Notes Date
 \qquad Period
 1) 1000 tickets were sold. Adult tickets cost $\$ 8.50$, children's cost $\$ 4.50$, and a total of $\$ 7300$ was collected. How many tickets of each kind were sold?

2) Mrs. B. invested $\$ 58,855$; part at an interest rate of 5%, and part at an interest of 8%. The total interest collected on the investment was $\$ 3,929$. How much did she invest at each rate?

$$
\$ 25,980 \text { at } 5 \% \text { and } \$ 32,875 \text { at } 8 \%
$$

3) Samantha has 44 coins, consisting of quarters, dimes, and nickels which total $\$ 7.15$. There are twice as many nickels as dimes. How many of each does she have?

23Q and 7D and 14 N

4) A boat traveled 168 miles each way downstream and back. The trip downstream took 12 hours. The trip back took 21 hours. Find the speed of the boat in still water and the speed of the current.

boat: 11 mph , current: 3 mph

If the following matrix does not have an inverse, find the value of \boldsymbol{x}.
5) $\left[\begin{array}{cc}-5 & 4 \\ 9 & x\end{array}\right]$
-7.2

Evaluate. Remember, this is the notation for the determinant of a matrix.
6) $\left|\begin{array}{cc}5 & 2 \\ 4 & -5\end{array}\right|$
-33

Find the inverse of each matrix.
7) $\left[\begin{array}{cc}-14 & 21 \\ 4 & -6\end{array}\right]$
No inverse exists
8) $\left[\begin{array}{cc}-8 & 3 \\ -1 & -1\end{array}\right]$

$$
\frac{1}{11} \cdot\left[\begin{array}{cc}
-1 & -3 \\
1 & -8
\end{array}\right]
$$

Find the area of a triangle with the given vertices.
9) $(3,15),(6,4)$, and (11, 9)

35 square units
10) $(-1,7),(2,6)$, and (4, -3)
12.5 square units
11) $(-2,5),(4,2)$, and $(0,7)$

9 square units

